Suppr超能文献

人类差异基因表达的可预测性。

Predictability of human differential gene expression.

机构信息

Stanley Center for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.

Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6491-6500. doi: 10.1073/pnas.1802973116. Epub 2019 Mar 7.

Abstract

Differential expression (DE) is commonly used to explore molecular mechanisms of biological conditions. While many studies report significant results between their groups of interest, the degree to which results are specific to the question at hand is not generally assessed, potentially leading to inaccurate interpretation. This could be particularly problematic for metaanalysis where replicability across datasets is taken as strong evidence for the existence of a specific, biologically relevant signal, but which instead may arise from recurrence of generic processes. To address this, we developed an approach to predict DE based on an analysis of over 600 studies. A predictor based on empirical prior probability of DE performs very well at this task (mean area under the receiver operating characteristic curve, ∼0.8), indicating that a large fraction of DE hit lists are nonspecific. In contrast, predictors based on attributes such as gene function, mutation rates, or network features perform poorly. Genes associated with sex, the extracellular matrix, the immune system, and stress responses are prominent within the "DE prior." In a series of control studies, we show that these patterns reflect shared biology rather than technical artifacts or ascertainment biases. Finally, we demonstrate the application of the DE prior to data interpretation in three use cases: () breast cancer subtyping, () single-cell genomics of pancreatic islet cells, and () metaanalysis of lung adenocarcinoma and renal transplant rejection transcriptomics. In all cases, we find hallmarks of generic DE, highlighting the need for nuanced interpretation of gene phenotypic associations.

摘要

差异表达 (DE) 常用于探索生物条件的分子机制。虽然许多研究报告了其感兴趣的组之间的显著结果,但结果在多大程度上特定于当前问题通常未被评估,这可能导致解释不准确。这在荟萃分析中尤其成问题,因为数据集之间的可重复性被视为存在特定的、生物学上相关信号的有力证据,但实际上这可能源于通用过程的重现。为了解决这个问题,我们开发了一种基于对超过 600 项研究的分析来预测 DE 的方法。基于 DE 的经验先验概率的预测器在这项任务中表现非常出色(约 0.8 的接收器操作特征曲线下面积),表明很大一部分 DE 命中列表是非特异性的。相比之下,基于基因功能、突变率或网络特征等属性的预测器表现不佳。与性别、细胞外基质、免疫系统和应激反应相关的基因在“DE 先验”中很突出。在一系列对照研究中,我们表明这些模式反映了共享的生物学,而不是技术伪影或确定偏差。最后,我们在三个用例中展示了 DE 先验在数据解释中的应用:()乳腺癌亚型分析,()胰腺胰岛细胞的单细胞基因组学,和()肺腺癌和肾移植排斥转录组学的荟萃分析。在所有情况下,我们都发现了通用 DE 的特征,这突出了对基因表型关联进行细致解释的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ef/6442595/47095d32feaf/pnas.1802973116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验