Department of Radiology, University of California, Los Angeles, CA 90095, USA.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1555-64. doi: 10.1109/TBME.2010.2101599. Epub 2010 Dec 23.
We routinely generate reaching arm movements to function independently. For paralyzed users of upper extremity neural prosthetic devices, flexible, high-performance reaching algorithms will be critical to restoring quality-of-life. Previously, algorithms called real-time reach state equations (RSE) were developed to integrate the user's plan and execution-related neural activity to drive reaching movements to arbitrary targets. Preliminary validation under restricted conditions suggested that RSE might yield dramatic performance improvements. Unfortunately, real-world applications of RSE have been impeded because the RSE assumes a fixed, known arrival time. Recent animal-based prototypes attempted to break the fixed-arrival-time assumption by proposing a standard model (SM) that instead restricted the user's movements to a fixed, known set of targets. Here, we leverage general purpose filter design (GPFD) to break both of these critical restrictions, freeing the paralyzed user to make reaching movements to arbitrary target sets with various arrival times and definitive stopping. In silico validation predicts that the new approach, GPFD-RSE, outperforms the SM while offering greater flexibility. We demonstrate the GPFD-RSE against SM in the simulated control of an overactuated 3-D virtual robotic arm with a real-time inverse kinematics engine.
我们通常会自主生成手臂运动来完成各种任务。对于上肢神经假肢设备的瘫痪用户来说,灵活、高性能的伸展算法对于恢复生活质量至关重要。此前,一种名为实时伸展状态方程(RSE)的算法被开发出来,用于整合用户的计划和执行相关的神经活动,从而驱动手臂运动到达任意目标。在限制条件下的初步验证表明,RSE 可能会带来显著的性能提升。不幸的是,由于 RSE 假设固定的、已知的到达时间,因此其在现实世界中的应用受到了阻碍。最近的基于动物的原型尝试通过提出一种标准模型(SM)来打破固定到达时间的假设,该模型将用户的运动限制在固定的、已知的目标集合中。在这里,我们利用通用滤波器设计(GPFD)打破这两个关键限制,让瘫痪用户可以自由地以各种到达时间和明确的停止点到达任意目标集进行伸展运动。计算机模拟验证预测,新方法 GPFD-RSE 在提供更大灵活性的同时,性能优于 SM。我们在实时逆运动学引擎的控制下,通过模拟一个过度驱动的 3D 虚拟机械臂,对 GPFD-RSE 与 SM 进行了对比。