Suppr超能文献

绘制生物分子中形成单价离子选择性的四个因素的重要性。

Mapping the importance of four factors in creating monovalent ion selectivity in biological molecules.

机构信息

School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia.

出版信息

Biophys J. 2011 Jan 5;100(1):60-9. doi: 10.1016/j.bpj.2010.11.022.

Abstract

The ability of macrocycles, enzymes, ion channels, transporters, and DNA to differentiate among ion types is often crucial to their function. Using molecular dynamics simulations on both detailed systems and simple models, we quantify the importance of several factors which affect the ion selectivity of such molecules, including the number of coordinating ligands, their dipole moment, and their vibrational motion. The information resulting from our model systems is distilled into a series of selectivity maps that can be used to read off the relative free energy associated with binding of different ions, and to provide an estimate of the importance of the various factors. Although our maps cannot capture all elements of real systems, it is remarkable that they produce differential site-binding energies that are in line with experiment and more-detailed simulations for a variety of systems-making them useful for understanding the origins of selective binding and transport. The chemical nature of the coordinating ligands is essential for creating thermodynamic ion selectivity in flexible molecules (such as 18c6), but as the binding site becomes more rigid, the number of ligands (as in ion channels) and the reduction of thermal fluctuations (as in amino-acid transporters) can become important. In the future, our maps could aid in the determination of the local structure from binding energies and assist in the design of novel ion selective molecules.

摘要

大环化合物、酶、离子通道、转运蛋白和 DNA 区分离子类型的能力通常对其功能至关重要。我们使用详细系统和简单模型的分子动力学模拟,量化了影响这些分子离子选择性的几个因素的重要性,包括配位配体的数量、偶极矩和振动运动。我们从模型系统中获得的信息被提炼成一系列选择性图,可以用来读取不同离子结合的相对自由能,并估计各种因素的重要性。虽然我们的地图无法捕捉到真实系统的所有元素,但令人惊讶的是,它们产生的差分结合能与各种系统的实验和更详细的模拟一致,这使得它们有助于理解选择性结合和运输的起源。配位配体的化学性质对于在柔性分子(如 18c6)中产生热力学离子选择性至关重要,但随着结合位点变得更加刚性,配体的数量(如在离子通道中)和热波动的减少(如在氨基酸转运蛋白中)变得重要。在未来,我们的地图可以帮助从结合能确定局部结构,并协助设计新型离子选择性分子。

相似文献

2
An entropic mechanism of generating selective ion binding in macromolecules.
PLoS Comput Biol. 2013;9(2):e1002914. doi: 10.1371/journal.pcbi.1002914. Epub 2013 Feb 28.
3
Exploring the origin of the ion selectivity of the KcsA potassium channel.
Proteins. 2003 Aug 15;52(3):412-26. doi: 10.1002/prot.10455.
4
How does overcoordination create ion selectivity?
Biophys Chem. 2013 Feb;172:37-42. doi: 10.1016/j.bpc.2012.11.005. Epub 2012 Dec 4.
5
Exploring the ion selectivity properties of a large number of simplified binding site models.
Biophys J. 2010 Jun 16;98(12):2877-85. doi: 10.1016/j.bpj.2010.03.038.
6
Multibody effects in ion binding and selectivity.
Biophys J. 2010 Nov 17;99(10):3394-401. doi: 10.1016/j.bpj.2010.09.019.
7
Ion selectivity of the KcsA channel: a perspective from multi-ion free energy landscapes.
J Mol Biol. 2010 Sep 3;401(5):831-42. doi: 10.1016/j.jmb.2010.07.006. Epub 2010 Jul 17.
8
Two mechanisms of ion selectivity in protein binding sites.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20329-34. doi: 10.1073/pnas.1007150107. Epub 2010 Nov 5.
9
Elucidating factors important for monovalent cation selectivity in enzymes: E. coli β-galactosidase as a model.
Phys Chem Chem Phys. 2015 Apr 28;17(16):10899-909. doi: 10.1039/c4cp04952g.

引用本文的文献

1
Updating view of membrane transport proteins by simulation studies.
Biophys Physicobiol. 2023 Nov 2;20(4):e200041. doi: 10.2142/biophysico.bppb-v20.0041. eCollection 2023.
2
Computational methods and theory for ion channel research.
Adv Phys X. 2022;7(1). doi: 10.1080/23746149.2022.2080587.
3
Conductance selectivity of Na across the K channel via Na trapped in a tortuous trajectory.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2017168118.
5
An entropic mechanism of generating selective ion binding in macromolecules.
PLoS Comput Biol. 2013;9(2):e1002914. doi: 10.1371/journal.pcbi.1002914. Epub 2013 Feb 28.
6
Role of spatial ionic distribution on the energetics of hydrophobic assembly and properties of the water/hydrophobe interface.
Phys Chem Chem Phys. 2012 Feb 14;14(6):1892-906. doi: 10.1039/c1cp20839j. Epub 2012 Jan 9.
7
Ion selectivity in channels and transporters.
J Gen Physiol. 2011 May;137(5):415-26. doi: 10.1085/jgp.201010577.

本文引用的文献

2
Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions.
J Chem Theory Comput. 2006 Nov;2(6):1499-509. doi: 10.1021/ct600252r.
3
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
4
Exploring the ion selectivity properties of a large number of simplified binding site models.
Biophys J. 2010 Jun 16;98(12):2877-85. doi: 10.1016/j.bpj.2010.03.038.
5
Mechanism of potassium-channel selectivity revealed by Na(+) and Li(+) binding sites within the KcsA pore.
Nat Struct Mol Biol. 2009 Dec;16(12):1317-24. doi: 10.1038/nsmb.1703. Epub 2009 Nov 29.
6
Hydration number, topological control, and ion selectivity.
J Phys Chem B. 2009 Jun 25;113(25):8725-30. doi: 10.1021/jp901233v.
7
Determinants of K+ vs Na+ selectivity in potassium channels.
J Am Chem Soc. 2009 Jun 17;131(23):8092-101. doi: 10.1021/ja900168k.
8
K+/Na+ selectivity in toy cation binding site models is determined by the 'host'.
Biophys J. 2009 May 20;96(10):3887-96. doi: 10.1016/j.bpj.2008.12.3963.
9
Ion selectivity in the KcsA potassium channel from the perspective of the ion binding site.
Biophys J. 2009 Mar 18;96(6):2138-45. doi: 10.1016/j.bpj.2008.12.3917.
10
Selectivity and cooperativity of modulatory ions in a neurotransmitter receptor.
Biophys J. 2009 Mar 4;96(5):1751-60. doi: 10.1016/j.bpj.2008.11.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验