State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
J Colloid Interface Sci. 2011 Mar 1;355(1):9-14. doi: 10.1016/j.jcis.2010.11.035. Epub 2010 Nov 18.
A simple method was developed for preparing CdSe quantum dots (QDs) using a common protein (bovine serum albumin (BSA)) to sequester QD precursors (Cd(2+)) in situ. Fluorescence (FL) and absorption spectra showed that the chelating time between BSA and Cd(2+), the molar ratio of BSA/Cd(2+), temperature, and pH are the crucial factors for the quality of QDs. The average QD particle size was estimated to be about 5 nm, determined by high-resolution transmission electron microscopy. With FL spectra, Fourier transform infrared spectra, and thermogravimetric analysis, an interesting mechanism was discussed for the formation of the BSA-CdSe QDs. The results indicate that there might be conjugated bonds between CdSe QDs and -OH, -NH, and -SH groups in BSA. In addition, fluorescence imaging suggests that the QDs we designed can successfully label Escherichia coli cells, which gives us a great opportunity to develop biocompatible tools to label bacteria cells.
开发了一种简单的方法,使用常见的蛋白质(牛血清白蛋白(BSA))来原位螯合量子点(QD)前体(Cd(2+))来制备 CdSe 量子点(QD)。荧光(FL)和吸收光谱表明,BSA 和 Cd(2+)之间的螯合时间、BSA/Cd(2+)的摩尔比、温度和 pH 值是影响 QD 质量的关键因素。通过高分辨率透射电子显微镜估计 QD 颗粒的平均粒径约为 5nm。通过 FL 光谱、傅里叶变换红外光谱和热重分析,讨论了 BSA-CdSe QD 形成的有趣机制。结果表明,CdSe QD 与 BSA 中的-OH、-NH 和-SH 基团之间可能存在共轭键。此外,荧光成像表明,我们设计的 QD 可以成功标记大肠杆菌细胞,这为我们开发用于标记细菌细胞的生物相容性工具提供了很好的机会。