Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, B.C., V6T 1Z3, Canada.
Heart Rhythm. 2011 May;8(5):770-7. doi: 10.1016/j.hrthm.2010.12.041. Epub 2010 Dec 27.
SCN5A mutations that cause a gain of function in the cardiac voltage-gated sodium channel (Nav1.5) lead to long QT syndrome and a higher risk for sudden cardiac death.
Here we functionally characterize the biophysical properties of the LQT3 variant, V411M, found in a newborn with a QT interval of 640 ms and 2:1 atrioventricular block.
Whole cell patch clamp was performed on wild-type and V411M Nav1.5 channels stably expressed in human embryonic kidney cells.
V411M channels showed hyperpolarizing shifts in both the conductance-voltage (V(1/2) = -48.5 ± 2.2 mV vs. -40.4 ± 1.6 mV for wild-type) and inactivation-voltage (-95.6 ± 1.9 mV vs. -87.7 ± 1.7 mV) relationships, and a two-fold increase in late (sustained) sodium current during voltage ramp repolarizations. While neither mexiletine nor lidocaine exhibited potency differences between WT and V411M, or shortened the QTc in vivo, increased mutant block was observed with 10 μM flecainide (71.4 ± 3.0% vs. 60.3 ± 2.8%), in a voltage-dependent manner. Incorporation of V411M kinetics into atrial and ventricular action potential models reproduced prolonged action potential repolarization.
Our data suggest a novel mechanism for LQT3, a result of a hyperpolarizing shift in the steady state activation relationship and re-activation of Nav1.5 towards a higher open probability during repolarization of the cardiac action potential. This results in an increased number of open-activated sodium channels, and so drugs that bind this state preferentially are expected to shorten the QTc more than those that favour the inactivated state.
导致心脏电压门控钠离子通道(Nav1.5)功能获得的 SCN5A 突变导致长 QT 综合征和心脏性猝死的风险增加。
本研究旨在对在一名 QT 间期为 640ms 并伴有 2:1 房室传导阻滞的新生儿中发现的 LQT3 变体 V411M 的生物物理特性进行功能表征。
采用全细胞膜片钳技术,在稳定表达于人胚肾细胞的野生型和 V411M Nav1.5 通道上进行检测。
V411M 通道的电导-电压(V(1/2)=-48.5±2.2mV 对比野生型的-40.4±1.6mV)和失活-电压(-95.6±1.9mV 对比野生型的-87.7±1.7mV)关系均发生超极化偏移,在电压 ramp 复极化时,晚期(持续)钠电流增加两倍。虽然美西律和利多卡因在 WT 和 V411M 之间没有显示出效力差异,也没有在体内缩短 QTc,但以电压依赖性方式观察到 10μM 氟卡尼增加了突变体的阻滞(71.4±3.0%对比野生型的 60.3±2.8%)。在心房和心室动作电位模型中纳入 V411M 的动力学特性,可重现动作电位复极化时的延长。
我们的数据表明,LQT3 的一种新机制是由于在心脏动作电位复极化过程中稳态激活关系的超极化偏移和 Nav1.5 的再激活导致更高的开放概率,从而增加了开放激活的钠通道数量,因此,与有利于失活状态的药物相比,优先结合该状态的药物有望更有效地缩短 QTc。