Suppr超能文献

钠通道生物物理学、晚钠电流与遗传性心律失常综合征

Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes.

作者信息

Chadda Karan R, Jeevaratnam Kamalan, Lei Ming, Huang Christopher L-H

机构信息

Faculty of Health and Medical Sciences, University of Surrey, VSM Building, Guildford, GU2 7AL, UK.

Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.

出版信息

Pflugers Arch. 2017 Jun;469(5-6):629-641. doi: 10.1007/s00424-017-1959-1. Epub 2017 Mar 6.

Abstract

Arrhythmias arise from breakdown of orderly action potential (AP) activation, propagation and recovery driven by interactive opening and closing of successive voltage-gated ion channels, in which one or more Na current components play critical parts. Early peak, Na currents (I ) reflecting channel activation drive the AP upstroke central to cellular activation and its propagation. Sustained late Na currents (I ) include contributions from a component with a delayed inactivation timecourse influencing AP duration (APD) and refractoriness, potentially causing pro-arrhythmic phenotypes. The magnitude of I can be analysed through overlaps or otherwise in the overall voltage dependences of the steady-state properties and kinetics of activation and inactivation of the Na conductance. This was useful in analysing repetitive firing associated with paramyotonia congenita in skeletal muscle. Similarly, genetic cardiac Na channel abnormalities increasing I are implicated in triggering phenomena of automaticity, early and delayed afterdepolarisations and arrhythmic substrate. This review illustrates a wide range of situations that may accentuate I . These include (1) overlaps between steady-state activation and inactivation increasing window current, (2) kinetic deficiencies in Na channel inactivation leading to bursting phenomena associated with repetitive channel openings and (3) non-equilibrium gating processes causing channel re-opening due to more rapid recoveries from inactivation. All these biophysical possibilities were identified in a selection of abnormal human SCN5A genotypes. The latter presented as a broad range of clinical arrhythmic phenotypes, for which effective therapeutic intervention would require specific identification and targeting of the diverse electrophysiological abnormalities underlying their increased I .

摘要

心律失常源于由连续电压门控离子通道的交互开放和关闭驱动的有序动作电位(AP)激活、传播和恢复的破坏,其中一个或多个钠电流成分起着关键作用。反映通道激活的早期峰值钠电流(I )驱动细胞激活及其传播的核心AP上升支。持续的晚期钠电流(I )包括来自具有延迟失活时间进程的成分的贡献,影响动作电位时程(APD)和不应期,可能导致促心律失常表型。I 的大小可以通过钠电导稳态特性、激活和失活动力学的整体电压依赖性中的重叠或以其他方式进行分析。这在分析与先天性副肌强直相关的重复放电中很有用。同样,增加I 的遗传性心脏钠通道异常与自动节律、早期和延迟后去极化以及心律失常基质的触发现象有关。本综述阐述了一系列可能加剧I 的情况。这些情况包括:(1)稳态激活和失活之间的重叠增加窗口电流;(2)钠通道失活的动力学缺陷导致与通道重复开放相关的爆发现象;(3)非平衡门控过程导致通道因从失活中更快恢复而重新开放。所有这些生物物理可能性都在一系列异常人类SCN5A基因型中得到了确认。后者表现为广泛的临床心律失常表型,针对这些表型进行有效的治疗干预需要对其I 增加背后的各种电生理异常进行特异性识别和靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb9/5438422/dc5875d528a5/424_2017_1959_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验