Suppr超能文献

分析测量误差情况下最小二乘神经网络回归估计的收敛速度。

Analysis of the rate of convergence of least squares neural network regression estimates in case of measurement errors.

机构信息

Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany.

出版信息

Neural Netw. 2011 Apr;24(3):273-9. doi: 10.1016/j.neunet.2010.11.003. Epub 2010 Nov 12.

Abstract

Estimation of a regression function from data which consists of an independent and identically distributed sample of the underlying distribution with additional measurement errors in the independent variables is considered. It is allowed that the measurement errors are not independent and have a nonzero mean. It is shown that the rate of convergence of suitably defined least squares neural network estimates applied to this data is similar to the rate of convergence of least squares neural network estimates applied to an independent and identically distributed sample of the underlying distribution as long as the measurement errors are small.

摘要

考虑了从独立同分布样本中包含额外测量误差的基础分布中提取回归函数的问题。允许测量误差不独立且具有非零均值。结果表明,只要测量误差较小,适当地定义最小二乘神经网络估计应用于该数据的收敛速度与最小二乘神经网络估计应用于基础分布的独立同分布样本的收敛速度相似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验