Neural Comput. 2011 Jan;23(1):284-301. doi: 10.1162/NECO_a_00062. Epub 2010 Oct 21.
Accurately evaluating statistical independence among random variables is a key element of independent component analysis (ICA). In this letter, we employ a squared-loss variant of mutual information as an independence measure and give its estimation method. Our basic idea is to estimate the ratio of probability densities directly without going through density estimation, thereby avoiding the difficult task of density estimation. In this density ratio approach, a natural cross-validation procedure is available for hyperparameter selection. Thus, all tuning parameters such as the kernel width or the regularization parameter can be objectively optimized. This is an advantage over recently developed kernel-based independence measures and is a highly useful property in unsupervised learning problems such as ICA. Based on this novel independence measure, we develop an ICA algorithm, named least-squares independent component analysis.
准确评估随机变量之间的统计独立性是独立成分分析 (ICA) 的关键要素。在这封信中,我们采用互信息的平方损失变体作为独立性度量,并给出了它的估计方法。我们的基本思想是直接估计概率密度比,而不经过密度估计,从而避免了密度估计的困难任务。在这种密度比方法中,可以为超参数选择提供自然的交叉验证过程。因此,所有的调整参数,如核宽度或正则化参数,都可以进行客观优化。这是相对于最近开发的基于核的独立性度量的一个优势,并且在 ICA 等无监督学习问题中是一个非常有用的特性。基于这个新的独立性度量,我们开发了一种 ICA 算法,称为最小二乘独立成分分析。