BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087, USA.
J Chem Phys. 2010 Dec 28;133(24):244107. doi: 10.1063/1.3515479.
We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.
我们将 Kohn-Sham 位能展开式(VE)扩展到包括动能密度的变化,并使用具有 6-31G* 基的 VE 公式来使用被分类为 LDA、GGA 或元 GGA 的密度泛函对小分子性质进行“雅各布天梯”比较。我们表明,如果不进一步近似就执行所有积分,VE 可以很好地再现标准 Kohn-Sham DFT 结果,并且相对于 GGA 泛函,使用元 GGA 泛函没有实质性的改进。在建模氢键时,使用 GGA 相对于 LDA 泛函的优势变得明显。我们进一步研究了使用积分近似来计算零阶能量和一阶矩阵元的效果,结果表明,自洽电荷密度泛函紧密结合方法中短程排斥势的起源主要来自于一阶矩阵元的近似。