Tubert-Brohman Ivan, Guimarães Cristiano Ruch Werneck, Jorgensen William L
Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520-8107.
J Chem Theory Comput. 2005;1(5):817-23. doi: 10.1021/ct0500287.
The PDDG/PM3 semiempirical molecular orbital method has been parameterized for molecules, ions, and complexes containing sulfur; the mean absolute error (MAE) for heats of formation, DeltaH(f), of 6.4 kcal/mol is 35 - 40 % smaller than for PM3, AM1, and MNDO/d. For completeness, parameterization was also carried out for silicon and phosphorous. For 144 silicon-containing molecules, the DeltaH(f) MAE for PDDG/PM3, PM3, and AM1 is 11 - 12 kcal/mol, while MNDO/d yields 9.4 kcal/mol. For the limited set of 43 phosphorus-containing molecules, MNDO/d also yields the best results followed by PDDG/PM3, AM1, and PM3. The benefits of the d-orbitals in MNDO/d for hypervalent compounds are apparent for silicon and phosphorous, while they are masked in the larger dataset for sulfur by large errors for branched compounds. Overall, for 1480 molecules, ions, and complexes containing the elements H, C, N, O, F, Si, P, S, Cl, Br, and I, the MAEs in kcal/mol for DeltaH(f) are 6.5 (PDDG/PM3), 8.7 (PM3), 10.3 (MNDO/d), 10.8 (AM1), and 19.8 (MNDO).
PDDG/PM3半经验分子轨道方法已针对含硫分子、离子和配合物进行了参数化;生成热ΔH(f)的平均绝对误差(MAE)为6.4千卡/摩尔,比PM3、AM1和MNDO/d小35 - 40%。为了全面起见,还对硅和磷进行了参数化。对于144个含硅分子,PDDG/PM3、PM3和AM1的ΔH(f) MAE为11 - 12千卡/摩尔,而MNDO/d为9.4千卡/摩尔。对于43个含磷分子的有限集合,MNDO/d也产生了最佳结果,其次是PDDG/PM3、AM1和PM3。MNDO/d中d轨道对高价化合物的益处对于硅和磷很明显,而在含硫的更大数据集中,由于支链化合物的大误差,这些益处被掩盖了。总体而言,对于1480个包含H、C、N、O、F、Si、P、S、Cl、Br和I元素的分子、离子和配合物,ΔH(f)的千卡/摩尔MAE分别为6.5(PDDG/PM3)、8.7(PM3)、10.3(MNDO/d)、10.8(AM1)和19.8(MNDO)。