Suppr超能文献

将PDDG/PM3半经验分子轨道方法扩展至硫、硅和磷

Extension of the PDDG/PM3 Semiempirical Molecular Orbital Method to Sulfur, Silicon, and Phosphorus.

作者信息

Tubert-Brohman Ivan, Guimarães Cristiano Ruch Werneck, Jorgensen William L

机构信息

Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520-8107.

出版信息

J Chem Theory Comput. 2005;1(5):817-23. doi: 10.1021/ct0500287.

Abstract

The PDDG/PM3 semiempirical molecular orbital method has been parameterized for molecules, ions, and complexes containing sulfur; the mean absolute error (MAE) for heats of formation, DeltaH(f), of 6.4 kcal/mol is 35 - 40 % smaller than for PM3, AM1, and MNDO/d. For completeness, parameterization was also carried out for silicon and phosphorous. For 144 silicon-containing molecules, the DeltaH(f) MAE for PDDG/PM3, PM3, and AM1 is 11 - 12 kcal/mol, while MNDO/d yields 9.4 kcal/mol. For the limited set of 43 phosphorus-containing molecules, MNDO/d also yields the best results followed by PDDG/PM3, AM1, and PM3. The benefits of the d-orbitals in MNDO/d for hypervalent compounds are apparent for silicon and phosphorous, while they are masked in the larger dataset for sulfur by large errors for branched compounds. Overall, for 1480 molecules, ions, and complexes containing the elements H, C, N, O, F, Si, P, S, Cl, Br, and I, the MAEs in kcal/mol for DeltaH(f) are 6.5 (PDDG/PM3), 8.7 (PM3), 10.3 (MNDO/d), 10.8 (AM1), and 19.8 (MNDO).

摘要

PDDG/PM3半经验分子轨道方法已针对含硫分子、离子和配合物进行了参数化;生成热ΔH(f)的平均绝对误差(MAE)为6.4千卡/摩尔,比PM3、AM1和MNDO/d小35 - 40%。为了全面起见,还对硅和磷进行了参数化。对于144个含硅分子,PDDG/PM3、PM3和AM1的ΔH(f) MAE为11 - 12千卡/摩尔,而MNDO/d为9.4千卡/摩尔。对于43个含磷分子的有限集合,MNDO/d也产生了最佳结果,其次是PDDG/PM3、AM1和PM3。MNDO/d中d轨道对高价化合物的益处对于硅和磷很明显,而在含硫的更大数据集中,由于支链化合物的大误差,这些益处被掩盖了。总体而言,对于1480个包含H、C、N、O、F、Si、P、S、Cl、Br和I元素的分子、离子和配合物,ΔH(f)的千卡/摩尔MAE分别为6.5(PDDG/PM3)、8.7(PM3)、10.3(MNDO/d)、10.8(AM1)和19.8(MNDO)。

相似文献

2
Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens.
J Comput Chem. 2004 Jan 15;25(1):138-50. doi: 10.1002/jcc.10356.
3
PDDG/PM3 and PDDG/MNDO: improved semiempirical methods.
J Comput Chem. 2002 Dec;23(16):1601-22. doi: 10.1002/jcc.10162.
4
Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules.
J Phys Chem A. 2006 Dec 21;110(50):13551-9. doi: 10.1021/jp064544k.
5
RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I.
J Comput Chem. 2006 Jul 30;27(10):1101-11. doi: 10.1002/jcc.20425.
6
Improved semiempirical heats of formation through the use of bond and group equivalents.
J Comput Chem. 2002 Mar;23(4):498-510. doi: 10.1002/jcc.10023.
7
NO-MNDO:  Reintroduction of the Overlap Matrix into MNDO.
J Chem Theory Comput. 2006 Mar;2(2):413-9. doi: 10.1021/ct050174c.
8
Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules.
J Chem Theory Comput. 2008 Feb;4(2):297-306. doi: 10.1021/ct700248k.
9
AM1* parameters for aluminum, silicon, titanium and zirconium.
J Mol Model. 2005 Nov;11(6):439-56. doi: 10.1007/s00894-005-0236-y. Epub 2005 Aug 19.
10
Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements.
J Mol Model. 2004 Apr;10(2):155-64. doi: 10.1007/s00894-004-0183-z. Epub 2004 Mar 2.

引用本文的文献

1
QM/MM Simulations of Afatinib-EGFR Addition: The Role of β-Dimethylaminomethyl Substitution.
J Chem Theory Comput. 2024 Jul 9;20(13):5528-5538. doi: 10.1021/acs.jctc.4c00290. Epub 2024 Jun 15.
2
QM/MM simulations of EFGR with afatinib reveal the role of the -dimethylaminomethyl substitution.
bioRxiv. 2024 May 8:2024.02.18.580887. doi: 10.1101/2024.02.18.580887.
3
Interaction landscape of a 'CNN' motif with arsenate and arsenite: a potential peptide-based scavenger of arsenic.
RSC Adv. 2019 Jan 9;9(2):1062-1074. doi: 10.1039/c8ra08225a. eCollection 2019 Jan 2.
4
Application of a BOSS-Gaussian interface for QM/MM simulations of Henry and methyl transfer reactions.
J Comput Chem. 2015 Oct 15;36(27):2064-74. doi: 10.1002/jcc.24045. Epub 2015 Aug 27.
5
Quantum and Molecular Mechanical (QM/MM) Monte Carlo Techniques for Modeling Condensed-Phase Reactions.
Wiley Interdiscip Rev Comput Mol Sci. 2014 Sep;4(5):422-435. doi: 10.1002/wcms.1180.
6
Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications.
J Chem Theory Comput. 2014 Apr 8;10(4):1518-1537. doi: 10.1021/ct401002w. Epub 2014 Mar 12.
7
Characterization of PfTrxR inhibitors using antimalarial assays and in silico techniques.
Chem Cent J. 2013 Nov 10;7(1):175. doi: 10.1186/1752-153X-7-175.
9
A Benchmark Test Suite for Proton Transfer Energies and its Use to Test Electronic Structure Model Chemistries.
Chem Phys. 2012 May 26;400:8-12. doi: 10.1016/j.chemphys.2012.01.014. Epub 2012 Mar 6.

本文引用的文献

3
Steric retardation of SN2 reactions in the gas phase and solution.
J Am Chem Soc. 2004 Jul 28;126(29):9054-8. doi: 10.1021/ja049070m.
4
Conformational effects in enzyme catalysis: QM/MM free energy calculation of the 'NAC' contribution in chorismate mutase.
Chem Commun (Camb). 2004 May 21(10):1238-9. doi: 10.1039/b402388a. Epub 2004 Apr 27.
5
Enthalpies of formation from B3LYP calculations.
J Comput Chem. 2004 Apr 15;25(5):725-33. doi: 10.1002/jcc.10398.
6
Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens.
J Comput Chem. 2004 Jan 15;25(1):138-50. doi: 10.1002/jcc.10356.
7
AM1* parameters for phosphorus, sulfur and chlorine.
J Mol Model. 2003 Dec;9(6):408-14. doi: 10.1007/s00894-003-0156-7. Epub 2003 Sep 4.
10
PDDG/PM3 and PDDG/MNDO: improved semiempirical methods.
J Comput Chem. 2002 Dec;23(16):1601-22. doi: 10.1002/jcc.10162.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验