Suppr超能文献

一种基于累积度日数的统计方法,用于预测法医学研究中与分解相关的过程。

A statistical approach based on accumulated degree-days to predict decomposition-related processes in forensic studies.

作者信息

Michaud Jean-Philippe, Moreau Gaétan

机构信息

Département de biologie, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada.

出版信息

J Forensic Sci. 2011 Jan;56(1):229-32. doi: 10.1111/j.1556-4029.2010.01559.x. Epub 2010 Sep 20.

Abstract

Using pig carcasses exposed over 3 years in rural fields during spring, summer, and fall, we studied the relationship between decomposition stages and degree-day accumulation (i) to verify the predictability of the decomposition stages used in forensic entomology to document carcass decomposition and (ii) to build a degree-day accumulation model applicable to various decomposition-related processes. Results indicate that the decomposition stages can be predicted with accuracy from temperature records and that a reliable degree-day index can be developed to study decomposition-related processes. The development of degree-day indices opens new doors for researchers and allows for the application of inferential tools unaffected by climatic variability, as well as for the inclusion of statistics in a science that is primarily descriptive and in need of validation methods in courtroom proceedings.

摘要

我们利用在春、夏、秋三季暴露于乡村田野长达3年的猪尸体,研究了分解阶段与度日积累之间的关系:(i)验证法医昆虫学中用于记录尸体分解的分解阶段的可预测性;(ii)建立适用于各种与分解相关过程的度日积累模型。结果表明,根据温度记录可以准确预测分解阶段,并且可以开发出可靠的度日指数来研究与分解相关的过程。度日指数的发展为研究人员打开了新的大门,使得不受气候变异性影响的推理工具得以应用,也使得统计学能够融入一门主要是描述性且在法庭程序中需要验证方法的学科。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验