Department of Urology, University Vita-Salute, San Raffaele Hospital, Milan, Italy.
Int J Urol. 2011 Feb;18(2):148-53. doi: 10.1111/j.1442-2042.2010.02689.x. Epub 2010 Dec 30.
To date, no tool exists to predict pT0 at radical prostatectomy (RP) in patients with T1a-T1b prostate cancer (PCa) after surgery for benign prostatic hyperplasia (SxBPH). We aimed to fill this gap by developing a user-friendly flowchart to assist urologists when incidental PCa is diagnosed and a clinical decision is required.
We analyzed 158 T1a-T1b prostate cancers patients who underwent RP between 1996 and 2009. A risk stratification tool was developed applying the tree modeling technique of classification and regression tree analysis (CART) and relying on all the available pre-RP characteristics (age, prostate-specific antigen [PSA] before SxBPH, PSA after SxBPH, cT1a-T1b stage, prostate volume and Gleason sum at SxBPH). Then, the accuracy of the proposed model using 200 bootstrap resamples for internal validation was calculated.
A total of 95 patients (60.1%) were stage T1a, and 63 (39.9%) were stage T1b. The median values of PSA before and after SxBPH were 4.2 and 1.1 ng/mL, respectively. A total of 22 patients (13.9%) showed no residual tumor (pT0) at RP. The CART analyses identified three groups at risk of having residual disease at RP: (i) PSA after SxBPH > 1.0 ng/mL (pT0 prevalence: 3.8%); (ii) PSA after SxBPH < 1.0 ng/mL and PSA before SxBPH > 2.0 ng/mL (pT0 prevalence: 14.8%); and (iii) PSA after SxBPH < 1.0 ng/mL and PSA before SxBPH < 2.0 ng/mL (pT0 prevalence: 42.3%). The accuracy of the proposed model was 77.1%. Clinical stage (T1a vs T1b) was not associated with pT0 (P = 0.4).
Clinical stage (T1a vs T1b) assessment does not help in predicting pT0 cases. An accurate and clinically useful flowchart to predict pT0 at RP after incidental prostate cancer diagnosis is provided herein.
迄今为止,尚无工具可预测接受良性前列腺增生症(BPH)手术治疗后 T1a-T1b 期前列腺癌(PCa)患者的根治性前列腺切除术(RP)时的 pT0 状态。我们旨在通过开发一个用户友好的流程图来填补这一空白,以协助泌尿科医生在诊断出偶发 PCa 并需要临床决策时使用。
我们分析了 1996 年至 2009 年间接受 RP 的 158 例 T1a-T1b 前列腺癌患者。应用分类和回归树分析(CART)的树模型技术开发了一种风险分层工具,并依赖于所有术前特征(年龄、BPH 术前 PSA、BPH 后 PSA、cT1a-T1b 期、前列腺体积和 BPH 时的 Gleason 评分总和)。然后,使用 200 次 bootstrap 重采样对内部分类的准确性进行了计算。
共有 95 例(60.1%)患者为 T1a 期,63 例(39.9%)为 T1b 期。BPH 术前和术后 PSA 的中位数分别为 4.2 和 1.1ng/ml。22 例(13.9%)患者在 RP 时无肿瘤残留(pT0)。CART 分析确定了 RP 时存在残留疾病风险的三组:(i)BPH 后 PSA>1.0ng/ml(pT0 发生率:3.8%);(ii)BPH 后 PSA<1.0ng/ml 且 BPH 前 PSA>2.0ng/ml(pT0 发生率:14.8%);和(iii)BPH 后 PSA<1.0ng/ml 且 BPH 前 PSA<2.0ng/ml(pT0 发生率:42.3%)。该模型的准确率为 77.1%。临床分期(T1a 与 T1b)与 pT0 无相关性(P=0.4)。
临床分期(T1a 与 T1b)评估无助于预测 pT0 病例。本文提供了一种准确且具有临床应用价值的预测偶发性前列腺癌诊断后 RP 时 pT0 的流程图。