Suppr超能文献

细胞质和核 IκB 蛋白的结构-功能关系:计算机分析。

Structure-function relationship of cytoplasmic and nuclear IκB proteins: an in silico analysis.

机构信息

Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.

出版信息

PLoS One. 2010 Dec 23;5(12):e15782. doi: 10.1371/journal.pone.0015782.

Abstract

Cytoplasmic IκB proteins are primary regulators that interact with NF-κB subunits in the cytoplasm of unstimulated cells. Upon stimulation, these IκB proteins are rapidly degraded, thus allowing NF-κB to translocate into the nucleus and activate the transcription of genes encoding various immune mediators. Subsequent to translocation, nuclear IκB proteins play an important role in the regulation of NF-κB transcriptional activity by acting either as activators or inhibitors. To date, molecular basis for the binding of IκBα, IκBβ and IκBζ along with their partners is known; however, the activation and inhibition mechanism of the remaining IκB (IκBNS, IκBε and Bcl-3) proteins remains elusive. Moreover, even though IκB proteins are structurally similar, it is difficult to determine the exact specificities of IκB proteins towards their respective binding partners. The three-dimensional structures of IκBNS, IκBζ and IκBε were modeled. Subsequently, we used an explicit solvent method to perform detailed molecular dynamic simulations of these proteins along with their known crystal structures (IκBα, IκBβ and Bcl-3) in order to investigate the flexibility of the ankyrin repeat domains (ARDs). Furthermore, the refined models of IκBNS, IκBε and Bcl-3 were used for multiple protein-protein docking studies for the identification of IκBNS-p50/p50, IκBε-p50/p65 and Bcl-3-p50/p50 complexes in order to study the structural basis of their activation and inhibition. The docking experiments revealed that IκBε masked the nuclear localization signal (NLS) of the p50/p65 subunits, thereby preventing its translocation into the nucleus. For the Bcl-3- and IκBNS-p50/p50 complexes, the results show that Bcl-3 mediated transcription through its transactivation domain (TAD) while IκBNS inhibited transcription due to its lack of a TAD, which is consistent with biochemical studies. Additionally, the numbers of identified flexible residues were equal in number among all IκB proteins, although they were not conserved. This could be the primary reason for their binding partner specificities.

摘要

细胞质 IκB 蛋白是主要的调节因子,可与未受刺激细胞细胞质中的 NF-κB 亚基相互作用。受到刺激后,这些 IκB 蛋白迅速降解,从而使 NF-κB 易位到细胞核并激活编码各种免疫介质的基因转录。易位后,核 IκB 蛋白通过作为激活剂或抑制剂在调节 NF-κB 转录活性方面发挥重要作用。迄今为止,已经了解了 IκBα、IκBβ 和 IκBζ 及其伴侣结合的分子基础;然而,其余 IκB(IκBNS、IκBε 和 Bcl-3)蛋白的激活和抑制机制仍不清楚。此外,即使 IκB 蛋白在结构上相似,也很难确定 IκB 蛋白对各自结合伴侣的确切特异性。对 IκBNS、IκBζ 和 IκBε 的三维结构进行了建模。随后,我们使用显式溶剂方法对这些蛋白及其已知晶体结构(IκBα、IκBβ 和 Bcl-3)进行了详细的分子动力学模拟,以研究锚蛋白重复结构域(ARD)的柔韧性。此外,还对 IκBNS、IκBε 和 Bcl-3 的经过改进的模型进行了多次蛋白质-蛋白质对接研究,以鉴定 IκBNS-p50/p50、IκBε-p50/p65 和 Bcl-3-p50/p50 复合物,以研究其激活和抑制的结构基础。对接实验表明,IκBε 掩盖了 p50/p65 亚基的核定位信号(NLS),从而阻止其易位到细胞核。对于 Bcl-3 和 IκBNS-p50/p50 复合物,结果表明 Bcl-3 通过其反式激活结构域(TAD)介导转录,而 IκBNS 由于缺乏 TAD 而抑制转录,这与生化研究一致。此外,所有 IκB 蛋白中的柔性残基数相等,尽管它们没有保守性。这可能是它们结合伴侣特异性的主要原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2859/3009747/503e910f3d96/pone.0015782.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验