Department of Neurology, Lurie Cancer Center, Center for Genetic Medicine Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
Protein Cell. 2010 Jun;1(6):552-62. doi: 10.1007/s13238-010-0067-1. Epub 2010 Jul 7.
Progranulin (PGRN) has recently emerged as a key player in a subset of frontotemporal dementias (FTD). Numerous mutations in the progranulin gene have been identified in patients with familial or sporadic frontotemporal lobar degeneration (FTLD). In order to understand the molecular mechanisms by which PGRN deficiency leads to FTLD, we examined activity of PGRN in mouse cortical and hippocampal neurons and in human neuroblastoma SH-SY5Y cells. Treatment of mouse neurons with PGRN protein resulted in an increase in neurite outgrowth, supporting the role of PGRN as a neurotrophic factor. PGRN treatment stimulated phosphorylation of glycogen synthase kinase-3 beta (GSK-3β) in cultured neurons. Knockdown of PGRN in SH-SY5Y cells impaired retinoic acid induced differentiation and reduced the level of phosphorylated GSK-3β. PGRN knockdown cells were also more sensitized to staurosporine-induced apoptosis. These results reveal an important role of PGRN in neurite outgrowth and involvement of GSK-3β in mediating PGRN activity. Identification of GSK-3β activation as a downstream event for PGRN signaling provides a mechanistic explanation for PGRN activity in the nervous system. Our work also suggest that loss of axonal growth stimulation during neural injury repair or deficits in axonal repair may contribute to neuronal damage or axonal loss in FTLD associated with PGRN mutations. Finally, our study suggests that modulating GSK-3β or similar signaling events may provide therapeutic benefits for FTLD cases associated with PGRN mutations.
颗粒体蛋白聚糖 (PGRN) 最近成为额颞叶痴呆(FTD)的一个关键因素。在家族性或散发性额颞叶变性(FTLD)患者中,已经发现了颗粒体蛋白聚糖基因的许多突变。为了了解 PGRN 缺乏导致 FTLD 的分子机制,我们研究了 PGRN 在小鼠皮质和海马神经元以及人神经母细胞瘤 SH-SY5Y 细胞中的活性。PGRN 蛋白处理小鼠神经元可增加神经突生长,支持 PGRN 作为神经营养因子的作用。PGRN 处理可刺激培养神经元中糖原合成酶激酶-3β(GSK-3β)的磷酸化。SH-SY5Y 细胞中 PGRN 的敲低会损害视黄酸诱导的分化并降低磷酸化 GSK-3β 的水平。PGRN 敲低细胞对 staurosporine 诱导的凋亡也更为敏感。这些结果揭示了 PGRN 在神经突生长中的重要作用以及 GSK-3β 在介导 PGRN 活性中的作用。鉴定 GSK-3β 激活作为 PGRN 信号转导的下游事件,为 PGRN 在神经系统中的活性提供了机制解释。我们的工作还表明,在神经损伤修复期间丧失轴突生长刺激或轴突修复缺陷可能导致与 PGRN 突变相关的 FTLD 中的神经元损伤或轴突丢失。最后,我们的研究表明,调节 GSK-3β 或类似信号事件可能为与 PGRN 突变相关的 FTLD 病例提供治疗益处。