Gaweda-Walerych Katarzyna, Aragona Vanessa, Lodato Simona, Sitek Emilia J, Narożańska Ewa, Buratti Emanuele
Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy.
Transl Neurodegener. 2025 Apr 16;14(1):18. doi: 10.1186/s40035-025-00475-8.
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
GRN基因的杂合突变导致前颗粒蛋白(PGRN)水平不足,从而引发伴有TAR DNA结合蛋白43(TDP - 43)包涵体的额颞叶痴呆(FTD),病理上归类为额颞叶变性(FTLD - TDP)。GRN纯合突变极为罕见,可导致神经元蜡样脂褐质沉积症11型(一种在成年早期发病的溶酶体贮积病)或具有迟发表现的FTD综合征。在本综述中,我们重点介绍了与PGRN缺乏相关的广泛临床表型,包括原发性进行性失语和额颞叶痴呆的行为变异型。我们结合相关的啮齿动物模型和体外人类模型来探讨这些表型,范围从诱导多能干细胞衍生的神经祖细胞、神经元、小胶质细胞和星形胶质细胞到包含神经元和星形胶质细胞的基因工程异型类器官。我们总结了这些模型在重现主要FTLD - GRN特征方面的优缺点,强调了非细胞自主机制在TDP - 43病理学形成、神经炎症和神经变性中的作用。从患者脑组织和生物流体中获得的数据,与单细胞转录组学一起,证明了大脑中高度异质的细胞簇(包括神经元、星形胶质细胞、小胶质细胞、少突胶质细胞、内皮细胞和周细胞)之间相互作用的复杂性。新出现的证据表明,PGRN缺乏与中枢神经系统中细胞簇特异性的、通常保守的遗传和分子表型相关。在本综述中,我们关注这些不同的细胞群体及其功能失调的相互作用如何导致FTD - GRN中的神经变性和神经炎症。具体而言,我们描述了脂质小滴积累的小胶质细胞的表型以及PGRN缺乏导致的溶酶体功能障碍引起的髓磷脂脂质含量变化。此外,我们考虑了神经胶质 - 神经元通讯失调如何影响PGRN相关神经变性中线粒体等细胞器的交换以及蛋白质聚集体等过量有毒产物的清除。