Suppr超能文献

人类神经集群记录的概念和技术方法

Conceptual and Technical Approaches to Human Neural Ensemble Recordings

作者信息

Turner Dennis A., Patil Parag G., Nicolelis Miguel A.L.

Abstract

The ability to perform either multineuron or local field/EEG recordings from the nervous system is a critical requirement to develop a new generation of neuroprosthetics that can sense the brain’s intent for action (Nicolelis 2001, 2003). This form of sensing neuroprosthesis builds upon the concept of current neuroprosthetic devices, which are primarily for macrostimulation of neural elements, such as deep brain stimulation (DBS); (Abosch, Hutchison et al. 2002; Rodriguez-Oroz, Obeso et al. 2005). A key aspect of this evolving technology is the translation of preclinical multineuron recording and analysis technology into the clinical arena (Donoghue 2002; Carmena, Lebedev et al. 2003; Mussa-Ivaldi, Miller et al. 2003). This translation requires the use of medical-grade components at all levels of electrodes, connections, and electronics, and the stabilization of technology and software for the long process of Food and Drug Administration (FDA) approval. Human sensing neuroprosthetic devices currently depend upon control signals from residual nerve or muscle activity to restore motor functions lost due to disease or trauma. It has been proposed that these devices could be significantly improved by directly harnessing brain activity from central motor-related regions to drive artificial actuators (Chapin 2000; Nicolelis 2001; Caves, Shane et al. 2002; Nicolelis, Chapin et al. 2002; Chapin and Chapin 2004). Recently, laboratory studies involving nonhuman primates have made considerable advances toward the development of such devices. For example, neuronal ensemble recordings from motor areas of cerebral cortex in nonhuman primates have been demonstrated to accurately predict three-dimensional arm movements (Chapin, Moxon et al. 1999; Wessberg, Stambaugh et al. 2000; Taylor, Tillery et al. 2002; Carmena, Lebedev et al. 2003; Nicolelis, Dimitrov et al. 2003) and to successfully control a robotic arm neuroprosthetic device. Despite these interesting advances, primate studies have yet to address the fundamental question as to whether current brain–machine interface (BMI) technology and approaches may be successfully applied to human patients, in particular, those who are naïve regarding the eventual tasks (Wolpaw, Birbaumer et al. 2002; Patil, Carmena et al. 2004; Gage, Ludwig et al. 2005). Nonhuman primate BMI studies suggest that multineuronal recordings are critical for neuroprosthetic applications, and may require a minimum of 50–100 recorded neurons to drive a real-time neuroprosthesis (Nicolelis 2001, 2003; Sanchez, Carmena et al. 2004). In addition to cortical motor regions, subcortical regions, such as the motor thalamus and subthalamic nucleus, are also involved in motor planning and execution, and could serve as alternative multineuron recording sites (Lenz, Kwan et al. 1990; Cheruel, Dormont et al. 1996; Abosch, Hutchison et al. 2002; Guillery, Sherman et al. 2002; MacMillan, Dostrovsky et al. 2004; Patil, Carmena et al. 2004). Devices utilizing control signals from the nervous system have also been developed recently to enhance functional independence, using external reflections of brain events rather than direct neuronal recordings, such as electroencephalogram (EEG), direct cortical surface recordings (ECoG), or evoked potentials (Kubler, Kotchoubey et al. 1999; Donchin, Spencer et al. 2000; Pfurtscheller, Guger et al. 2000; Birch, Bozorgzadeh et al. 2002; Wolpaw, Birbaumer et al. 2002; Scherberger, Jarvis et al. 2005). These external signals suffer considerable information loss, because the control signal is derived from thousands or millions of neurons averaged across time and space. For example, scalp EEG signals can enable the control of approximately 6–7 characters per minute on an optimized keyboard, for a short period, but this is very limited for most purposes (Wolpaw, Birbaumer et al. 2002). Although a large variety of devices and approaches to neuroprosthetics are currently available, there is not at present a robust control signal that can be derived directly from the brain using noninvasive methods and that leads to fast, reliable conversion of thoughts into actions (Nicolelis 2001, 2003). This challenge leads to two problems. The first is that a high-throughput, reliable control signal is needed to directly link the brain with external devices, for translation of thought into action (Figure 12.1). The second is the inherent understanding of what packets of action potentials mean to the brain, and how sensorimotor information is concurrently processed by multiple subcortical and cortical structures that define a neural circuit. This challenge is thus posed from two different angles—the clinical treatment domain of using a control signal (regardless of its meaning if it works) to actuate an external event, and the research domain of interpreting information generated by networks of neurons involved in coding, ultimately leading to a better understanding of brain function. For both of these challenging goals, the concept and practical achievement of neural ensemble recordings are critical; the various types of available and envisioned devices will be discussed in detail.

摘要

能够对神经系统进行多神经元或局部场/脑电图记录,是开发新一代能够感知大脑行动意图的神经假体的关键要求(尼科莱利斯,2001年、2003年)。这种传感神经假体形式建立在当前神经假体装置的概念之上,当前的神经假体装置主要用于对神经元进行宏观刺激,如深部脑刺激(DBS)(阿博施、哈钦森等人,2002年;罗德里格斯 - 奥罗斯、奥贝索等人,2005年)。这项不断发展的技术的一个关键方面是将临床前多神经元记录和分析技术转化到临床领域(多诺霍,2002年;卡尔梅纳、列别杰夫等人,2003年;穆萨 - 伊瓦尔迪、米勒等人,2003年)。这种转化需要在电极、连接和电子设备的各个层面使用医疗级组件,并使技术和软件在漫长的食品药品监督管理局(FDA)审批过程中保持稳定。目前,人类传感神经假体装置依赖于来自残余神经或肌肉活动的控制信号,以恢复因疾病或创伤而丧失的运动功能。有人提出,通过直接利用与中央运动相关区域的大脑活动来驱动人工致动器,这些装置可以得到显著改进(查平,2000年;尼科莱利斯,2001年;凯夫斯、沙恩等人,2002年;尼科莱利斯、查平等人,2002年;查平和查平,2004年)。最近,涉及非人类灵长类动物的实验室研究在开发此类装置方面取得了相当大的进展。例如,已证明从非人类灵长类动物大脑皮层运动区域进行的神经元群体记录能够准确预测三维手臂运动(查平、莫克森等人,1999年;韦斯伯格、斯坦baugh等人,2000年;泰勒、蒂勒里等人,2002年;卡尔梅纳、列别杰夫等人,2003年;尼科莱利斯、季米特洛夫等人,2003年),并成功控制机器人手臂神经假体装置。尽管取得了这些有趣的进展,但灵长类动物研究尚未解决当前脑机接口(BMI)技术和方法是否可以成功应用于人类患者,特别是那些对最终任务毫无经验的患者这一基本问题(沃尔波、比尔鲍默等人,2002年;帕蒂尔、卡尔梅纳等人,2004年;盖奇、路德维希等人,2005年)。非人类灵长类动物BMI研究表明,多神经元记录对于神经假体应用至关重要,并且可能需要至少50 - 100个记录的神经元来驱动实时神经假体(尼科莱利斯,2001年、2003年;桑切斯、卡尔梅纳等人,2004年)。除了皮层运动区域,皮层下区域,如运动丘脑和丘脑底核,也参与运动规划和执行,并且可以作为替代的多神经元记录部位(伦茨、关等人,1990年;谢吕埃尔、多尔蒙特等人,1996年;阿博施、哈钦森等人,2002年;吉勒里、谢尔曼等人,2002年;麦克米伦、多斯特罗夫斯基等人,2004年;帕蒂尔、卡尔梅纳等人,2004年)。最近还开发了利用来自神经系统的控制信号的装置,以增强功能独立性,这些装置使用大脑事件的外部反射而不是直接的神经元记录,如脑电图(EEG)、直接皮层表面记录(ECoG)或诱发电位(库布勒、科丘贝等人,1999年;唐钦、斯宾塞等人,2000年;普弗策勒、古格等人,2000年;伯奇、博佐尔加德等人,2002年;沃尔波、比尔鲍默等人,2002年;舍尔贝格、贾维斯等人,2005年)。这些外部信号会遭受相当大的信息损失,因为控制信号是从在时间和空间上平均的数千或数百万个神经元中得出的。例如,头皮EEG信号在优化键盘上短时间内每分钟大约能控制6 - 7个字符,但这对于大多数目的来说非常有限(沃尔波、比尔鲍默等人,2002年)。尽管目前有各种各样的神经假体装置和方法,但目前还没有一种强大的控制信号能够使用非侵入性方法直接从大脑中获得,并能将思想快速、可靠地转化为行动(尼科莱利斯,2001年、2003年)。这一挑战导致两个问题。第一个问题是需要一个高通量、可靠的控制信号来直接将大脑与外部设备连接起来,以便将思想转化为行动(图12.1)。第二个问题是对动作电位包对大脑意味着什么以及感觉运动信息如何由定义神经回路的多个皮层下和皮层结构同时处理的内在理解。因此,这一挑战从两个不同角度提出——使用控制信号(无论其是否有效,如果有效则不管其含义)来驱动外部事件的临床治疗领域,以及解释参与编码的神经元网络产生的信息的研究领域,最终导致对大脑功能有更好的理解。对于这两个具有挑战性的目标,神经元群体记录的概念和实际成果都至关重要;将详细讨论各种可用的和设想中的装置。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验