Oliveira Laura M. O., Dimitrov Dragan
The study of electrophysiology started with the work of Luigi Galvani (1737–1798), who was the first to provide evidence for the electrical nature of “the mysterious fluid” (at the time referred to as “animal spirits”). Galvani’s nephew, Giovanni Aldini (1762–1834), continued this line of inquiry in 1803, using Galvani’s and Alessandro Volta’s (bimetallic electricity) principles together, despite the fact that Volta did not believe in animal electricity. Carlo Mateucci (1818–1868) in Bologna and Emil Du Bois-Reymond (1818–1896) in Berlin described the phenomenon called “negative variation” when a galvanometer showed an unexpected decrease in current intensity during muscle contraction. The study of the electrophysiology of the nervous system began when Julius Berstein (1839–1917) proposed his theory of the nerve impulse as a wave of negativity (membrane theory of the nerve tissue). Later, using a galvanometer with one electrode in the gray matter and one on the skull surface (or electrodes in different points of the external surface of the brain), Richard Caton (1842–1926) recorded a feeble current in the brain. In 1870, for the first time, Gustav Fritsch (1838–1927) and Eduard Hitzig (1838–1907) inserted an electrode in the dura of a dog brain and stimulated the motor area, generating movement in the contralateral side of the animal’s body (Niedermeyer 1993; Piccolino 1998). The work of these and many other scientists marked the beginning of the study of the electrophysiology of the nervous system, opening doors to the possibility of stimulating different areas of the brain through electrical current and subsequently recording the brain electrical activity. Improvements in electrode manufacturing, the advent of modern acquisition equipment, and better surgical and asepsis techniques have provided us the ability to chronically implant multiple electrodes simultaneously in several areas of the brain in the same animal (Nicolelis, Baccala et al., 1995) and to study the interactions of populations of neurons (Nicolelis, Fanselow et al., 1997; Ghazanfar, Stambaugh et al., 2000). Upon the animal’s recovery from surgery, we have been able to record simultaneously from different brain areas of mice (Costa, Cohen et al., 2004), rats (Faggin, Nguyen et al., 1997; Ghazanfar and Nicolelis 1997; Nicolelis, Ghazanfar et al., 1997) and nonhuman primate brains (Nicolelis, Stambaugh et al., 1999; Nicolelis, Dimitrov et al., 2003) for long periods of time, from a couple of months in rodents (Ghazanfar and Nicolelis 1997; Nicolelis, Ghazanfar et al., 1997) to up to years in non-human primates, such as owl monkeys (Nicolelis, Ghazanfar et al., 1998) and Rhesus monkeys (Nicolelis, Dimitrov et al., 2003). These recordings are carried out under several different experimental conditions and behavior tasks (Kralik, Dimitrov et al., 2001; Nicolelis and Ribeiro 2002). With chronically implanted multiple electrodes, it is also possible to record different layers of the same area of the brain (Chapin and Lin 1984) and study spatiotemporal response of many neurons (Nicolelis and Chapin 1994). Microcannulae can be attached to the electrode arrays and are used to inject drugs in the areas of the implant during chronic experimental recordings (Shuler, Krupa et al., 2002). Chronically implanted electrodes offer unparalleled advantages for correlating neuronal activity and animal behavior. In our lab, these techniques were developed in rodents and later adapted to primates. Over the last several years, there have been significant strides in making rodent implantations more reliable, faster, and easier. We have identified and resolved many of the issues that now permit larger neuronal yields that last longer. As a consequence of continuous improvement in techniques, the length of time required for surgery has been reduced. At the same time, over the last 14 years, we have developed a surgical technique adapted to the unique features of primates. This has made primate implantations routine and reproducible. Here, we will describe detailed technical aspects of the current surgical implantation approach used in our laboratory at the Duke University Center for Neuroengineering (DUCN). Such a surgical protocol has evolved and benefited from almost two decades of accumulated experience on chronic multielectrode neural recordings (Nicolelis, Stambaugh et al., 1999; Nicolelis, Dimitrov et al., 2003, Kralik, Dimitrov et al., 2001; Nicolelis and Ribeiro 2002).
电生理学的研究始于路易吉·伽伐尼(1737 - 1798)的工作,他是第一个为“神秘流体”(当时称为“动物精气”)的电性质提供证据的人。伽伐尼的侄子乔瓦尼·阿尔迪尼(1762 - 1834)在1803年继续了这一探究路线,他将伽伐尼的原理和亚历山德罗·伏特的(双金属电)原理结合起来,尽管伏特并不相信动物电。博洛尼亚的卡洛·马特乌奇(1818 - 1868)和柏林的埃米尔·杜·布瓦 - 雷蒙德(1818 - 1896)描述了一种现象,当肌肉收缩时,检流计显示电流强度意外下降,他们将此现象称为“负变”。当尤利乌斯·伯恩斯坦(1839 - 1917)提出他的神经冲动理论,即神经冲动是一种负性波(神经组织的膜理论)时,神经系统电生理学的研究开始了。后来,理查德·卡顿(1842 - 1926)使用一个电极置于灰质中,另一个电极置于颅骨表面(或大脑外表面不同点的电极)的检流计,记录到了大脑中的微弱电流。1870年,古斯塔夫·弗里奇(1838 - 1927)和爱德华·希茨ig(1838 - 1907)首次将电极插入狗脑的硬脑膜并刺激运动区,使动物身体的对侧产生运动(尼德迈尔,1993;皮科利诺,1998)。这些科学家以及许多其他科学家的工作标志着神经系统电生理学研究的开端,为通过电流刺激大脑不同区域并随后记录大脑电活动打开了可能性之门。电极制造的改进、现代采集设备的出现以及更好的手术和无菌技术,使我们有能力在同一只动物的大脑多个区域同时长期植入多个电极(尼科莱利斯、巴卡拉等人,1995),并研究神经元群体的相互作用(尼科莱利斯、范塞尔洛等人,1997;加赞法尔、斯坦baugh等人,2000)。动物从手术中恢复后,我们能够同时从小鼠(科斯塔、科恩等人,2004)、大鼠(法金、阮等人,1997;加赞法尔和尼科莱利斯,1997;尼科莱利斯、加赞法尔等人,1997)和非人类灵长类动物大脑(尼科莱利斯、斯坦baugh等人,1999;尼科莱利斯、季米特洛夫等人,2003)的不同脑区进行长时间记录,在啮齿动物中记录时间长达数月(加赞法尔和尼科莱利斯,1997;尼科莱利斯、加赞法尔等人,1997),在非人类灵长类动物中长达数年,如枭猴(尼科莱利斯、加赞法尔等人,1998)和恒河猴(尼科莱利斯、季米特洛夫等人,2003)。这些记录是在几种不同的实验条件和行为任务下进行的(克拉利克、季米特洛夫等人,2001;尼科莱利斯和里贝罗,2002)。通过长期植入多个电极,还可以记录大脑同一区域的不同层(查平和林,1984),并研究许多神经元的时空反应(尼科莱利斯和查平,1994)。微插管可以连接到电极阵列上,并用于在慢性实验记录期间向植入区域注射药物(舒勒、克鲁帕等人,2002)。长期植入的电极在关联神经元活动和动物行为方面具有无与伦比的优势。在我们实验室,这些技术首先在啮齿动物中开发,后来应用于灵长类动物。在过去几年中,在使啮齿动物植入更可靠、更快、更容易方面取得了重大进展。我们已经识别并解决了许多问题,现在能够获得更大数量且持续时间更长的神经元产量。由于技术的不断改进,手术所需时间减少了。同时,在过去14年中,我们开发了一种适应灵长类动物独特特征的手术技术。这使得灵长类动物植入成为常规且可重复的操作。在这里,我们将描述杜克大学神经工程中心(DUCN)我们实验室目前使用的手术植入方法的详细技术方面。这样的手术方案已经演变并受益于近二十年积累的慢性多电极神经记录经验(尼科莱利斯、斯坦baugh等人,1999;尼科莱利斯、季米特洛夫等人,2003;克拉利克、季米特洛夫等人,2001;尼科莱利斯和里贝罗,2002)。