Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States.
Biochemistry. 2011 Feb 15;50(6):989-1000. doi: 10.1021/bi101795q. Epub 2011 Jan 20.
The polysaccharide-rich cell walls (CWs) of plants perform essential functions such as maintaining tensile strength and allowing plant growth. Using two- and three-dimensional magic-angle-spinning (MAS) solid-state NMR and uniformly (13)C-labeled Arabidopsis thaliana, we have assigned the resonances of the major polysaccharides in the intact and insoluble primary CW and determined the intermolecular contacts and dynamics of cellulose, hemicelluloses, and pectins. Cellulose microfibrils showed extensive interactions with pectins, while the main hemicellulose, xyloglucan, exhibited few cellulose cross-peaks, suggesting limited entrapment in the microfibrils rather than extensive surface coating. Site-resolved (13)C T(1) and (1)H T(1ρ) relaxation times indicate that the entrapped xyloglucan has motional properties that are intermediate between the rigid cellulose and the dynamic pectins. Xyloglucan absence in a triple knockout mutant caused the polysaccharides to undergo much faster motions than in the wild-type CW. These results suggest that load bearing in plant CWs is accomplished by a single network of all three types of polysaccharides instead of a cellulose-xyloglucan network, thus revising the existing paradigm of CW structure. The extensive pectin-cellulose interaction suggests a central role for pectins in maintaining the structure and function of plant CWs. This study demonstrates the power of multidimensional MAS NMR for molecular level investigation of the structure and dynamics of complex and energy-rich plant materials.
植物富含多糖的细胞壁 (CWs) 具有维持拉伸强度和允许植物生长等基本功能。使用二维和三维魔角旋转 (MAS) 固态 NMR 和均匀标记的拟南芥 (Arabidopsis thaliana),我们已经确定了完整和不溶性初生 CW 中主要多糖的共振,并确定了纤维素、半纤维素和果胶的分子间相互作用和动力学。纤维素微纤维与果胶表现出广泛的相互作用,而主要的半纤维素木葡聚糖显示出很少的纤维素交叉峰,表明其在微纤维中的包埋有限,而不是广泛的表面涂层。位点分辨 (13)C T(1) 和 (1)H T(1ρ) 弛豫时间表明,包埋的木葡聚糖具有介于刚性纤维素和动态果胶之间的中间运动性质。在三重敲除突变体中缺失木葡聚糖会导致多糖比在野生型 CW 中更快地运动。这些结果表明,植物 CWs 的承载能力是通过所有三种类型多糖的单一网络而不是纤维素-木葡聚糖网络来完成的,从而修正了 CW 结构的现有范式。果胶与纤维素的广泛相互作用表明果胶在维持植物 CWs 的结构和功能方面起着核心作用。这项研究展示了多维 MAS NMR 在复杂和能量丰富的植物材料的结构和动力学的分子水平研究中的强大功能。