Coutinho Isabel Duarte, Facchinatto William Marcondes, Mertz-Henning Liliane Marcia, Viana Américo José Carvalho, Marin Silvana Regina Rockenbach, Santagneli Silvia Helena, Nepomuceno Alexandre Lima, Colnago Luiz Alberto
Embrapa Instrumentation, Brazilian Agricultural Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil.
Embrapa Soybean, Brazilian Agricultural Research Corporation, HWY Carlos João Strass, Warta District, P.O. Box 4006, 86085-981 Londrina, Paraná, Brazil.
ACS Omega. 2024 Jul 16;9(30):32651-32661. doi: 10.1021/acsomega.4c01796. eCollection 2024 Jul 30.
Drought stress impacts soybean yields and physiological processes. However, the insertion of the activated form of the AtAREB1 gene in the soybean cultivar BR16, which is sensitive to water deficit, improved the drought response of the genetically modified plants. Thus, in this study, we used H NMR in solution and solid-state NMR to investigate the response of genetically modified soybean overexpressing AtAREB1 under water deficiency conditions. We achieved that drought-tolerant soybean yields high content of amino acids isoleucine, leucine, threonine, valine, proline, glutamate, aspartate, asparagine, tyrosine, and phenylalanine after 12 days of drought stress conditions, as compared to drought-sensitive soybean under the same conditions. Specific target compounds, including sugars, organic acids, and phenolic compounds, were identified as involved in controlling sensitive soybean during the vegetative stage. Solid-state NMR was used to study the impact of drought stress on starch and cellulose contents in different soybean genotypes. The findings provide insights into the metabolic adjustments of soybean overexpressing AREB transcription factors in adapting to dry climates. This study presents NMR techniques for investigating the metabolome of transgenic soybean plants in response to the water deficit. The approach allowed for the identification of physiological and morphological changes in drought-resistant and drought-tolerant soybean tissues. The findings indicate that drought stress significantly alters micro- and macromolecular metabolism in soybean plants. Differential responses were observed among roots and leaves as well as drought-tolerant and drought-sensitive cultivars, highlighting the complex interplay between overexpressed transcription factors and drought stress in soybean plants.
干旱胁迫会影响大豆产量和生理过程。然而,将AtAREB1基因的激活形式插入对水分亏缺敏感的大豆品种BR16中,改善了转基因植株的干旱响应。因此,在本研究中,我们使用溶液态核磁共振氢谱(H NMR)和固态核磁共振(NMR)来研究过表达AtAREB1的转基因大豆在水分亏缺条件下的响应。我们发现,在干旱胁迫12天后,与相同条件下的干旱敏感型大豆相比,耐旱型大豆中异亮氨酸、亮氨酸、苏氨酸、缬氨酸、脯氨酸、谷氨酸、天冬氨酸、天冬酰胺、酪氨酸和苯丙氨酸的氨基酸含量较高。特定的目标化合物,包括糖类、有机酸和酚类化合物,被确定在营养生长阶段参与调控敏感型大豆。固态核磁共振被用于研究干旱胁迫对不同大豆基因型中淀粉和纤维素含量的影响。这些发现为过表达AREB转录因子的大豆在适应干旱气候时的代谢调节提供了见解。本研究展示了用于研究转基因大豆植株代谢组对水分亏缺响应的核磁共振技术。该方法能够识别耐旱型和干旱敏感型大豆组织中的生理和形态变化。研究结果表明,干旱胁迫显著改变了大豆植株中的微观和宏观分子代谢。在根和叶以及耐旱型和干旱敏感型品种之间观察到了不同的响应,突出了大豆植株中过表达的转录因子与干旱胁迫之间复杂的相互作用。