Suppr超能文献

配体与具有湿区和干区的蛋白结合口袋结合。

Ligand binding to protein-binding pockets with wet and dry regions.

机构信息

Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1326-30. doi: 10.1073/pnas.1016793108. Epub 2011 Jan 4.

Abstract

Biological processes often depend on protein-ligand binding events, yet accurate calculation of the associated energetics remains as a significant challenge of central importance to structure-based drug design. Recently, we have proposed that the displacement of unfavorable waters by the ligand, replacing them with groups complementary to the protein surface, is the principal driving force for protein-ligand binding, and we have introduced the WaterMap method to account this effect. However, in spite of the adage "nature abhors vacuum," one can occasionally observe situations in which a portion of the receptor active site is so unfavorable for water molecules that a void is formed there. In this paper, we demonstrate that the presence of dry regions in the receptor has a nontrivial effect on ligand binding affinity, and suggest that such regions may represent a general motif for molecular recognition between the dry region in the receptor and the hydrophobic groups in the ligands. With the introduction of a term attributable to the occupation of the dry regions by ligand atoms, combined with the WaterMap calculation, we obtain excellent agreement with experiment for the prediction of relative binding affinities for a number of congeneric ligand series binding to the major urinary protein receptor. In addition, WaterMap when combined with the cavity contribution is more predictive than at least one specific implementation [Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) J Am Chem Soc 130:2817-2831] of the popular MM-GBSA approach to binding affinity calculation.

摘要

生物过程通常依赖于蛋白质-配体结合事件,但准确计算相关的能量仍然是基于结构的药物设计的一个重要挑战。最近,我们提出了配体取代不利水的观点,用与蛋白质表面互补的基团取代它们,这是蛋白质-配体结合的主要驱动力,我们引入了 WaterMap 方法来考虑这种效应。然而,尽管有句谚语说“大自然厌恶真空”,但人们偶尔会观察到受体活性部位的一部分对水分子非常不利,以至于在那里形成了一个空洞。在本文中,我们证明了受体中干燥区域的存在对配体结合亲和力有重要影响,并表明这些区域可能代表受体中干燥区域与配体中疏水区之间分子识别的一般模式。通过引入一个归因于配体原子占据干燥区域的术语,结合 WaterMap 计算,我们得到了与实验非常吻合的结果,预测了许多同系配体系列与主要尿蛋白受体结合的相对结合亲和力。此外,WaterMap 与腔贡献相结合比至少一种特定的 MM-GBSA 结合亲和力计算方法的实现[Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) J Am Chem Soc 130:2817-2831]更具预测性。

相似文献

1
Ligand binding to protein-binding pockets with wet and dry regions.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1326-30. doi: 10.1073/pnas.1016793108. Epub 2011 Jan 4.
2
Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap.
Expert Opin Drug Discov. 2013 Mar;8(3):277-87. doi: 10.1517/17460441.2013.749853. Epub 2013 Jan 4.
3
Effect of explicit water molecules on ligand-binding affinities calculated with the MM/GBSA approach.
J Mol Model. 2014 Jun;20(6):2273. doi: 10.1007/s00894-014-2273-x. Epub 2014 May 29.
6
Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery.
Curr Top Med Chem. 2017;17(23):2586-2598. doi: 10.2174/1568026617666170414141452.
8
Entropic cost of protein-ligand binding and its dependence on the entropy in solution.
J Phys Chem B. 2009 Apr 30;113(17):5871-84. doi: 10.1021/jp809968p.
9
Energy Decomposition Analysis of Protein-Ligand Interactions Using Molecules-in-Molecules Fragmentation-Based Method.
J Chem Inf Model. 2019 Aug 26;59(8):3474-3484. doi: 10.1021/acs.jcim.9b00432. Epub 2019 Aug 12.

引用本文的文献

1
Adiabatic-Bias Molecular Dynamics Simulations Reveal the Impact of Mutations on Muscarinic Antagonist Unbinding Kinetics.
J Chem Inf Model. 2025 Jul 14;65(13):7129-7142. doi: 10.1021/acs.jcim.5c00601. Epub 2025 Jun 16.
2
Thermodynamics of Water Displacement from Binding Sites and its Contributions to Supramolecular and Biomolecular Affinity.
Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202505713. doi: 10.1002/anie.202505713. Epub 2025 Jun 16.
4
Nonequilibrium Binding Free Energy Simulations: Minimizing Dissipation.
J Chem Theory Comput. 2025 Feb 25;21(4):2079-2094. doi: 10.1021/acs.jctc.4c01453. Epub 2025 Feb 5.
5
Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments.
J Chem Inf Model. 2024 Dec 9;64(23):8980-8998. doi: 10.1021/acs.jcim.4c01291. Epub 2024 Nov 22.
6
Transformation of peptides to small molecules in medicinal chemistry: Challenges and opportunities.
Acta Pharm Sin B. 2024 Oct;14(10):4243-4265. doi: 10.1016/j.apsb.2024.06.019. Epub 2024 Jun 25.
8
Peptide-to-Small Molecule: Discovery of Non-Covalent, Active-Site Inhibitors of β-Herpesvirus Proteases.
ACS Med Chem Lett. 2023 Oct 27;14(11):1558-1566. doi: 10.1021/acsmedchemlett.3c00359. eCollection 2023 Nov 9.
9
The temperature-dependence of host-guest binding thermodynamics: experimental and simulation studies.
Chem Sci. 2023 Oct 13;14(42):11818-11829. doi: 10.1039/d3sc01975f. eCollection 2023 Nov 1.

本文引用的文献

3
Dewetting transitions in protein cavities.
Proteins. 2010 Jun;78(8):1856-69. doi: 10.1002/prot.22699.
4
Understanding kinase selectivity through energetic analysis of binding site waters.
ChemMedChem. 2010 Apr 6;5(4):618-27. doi: 10.1002/cmdc.200900501.
5
Prediction of the water content in protein binding sites.
J Phys Chem B. 2009 Oct 8;113(40):13337-46. doi: 10.1021/jp9047456.
7
Binding of small-molecule ligands to proteins: "what you see" is not always "what you get".
Structure. 2009 Apr 15;17(4):489-98. doi: 10.1016/j.str.2009.02.010.
8
Computational evaluation of protein-small molecule binding.
Curr Opin Struct Biol. 2009 Feb;19(1):56-61. doi: 10.1016/j.sbi.2008.11.009. Epub 2009 Jan 21.
9
Role of the active-site solvent in the thermodynamics of factor Xa ligand binding.
J Am Chem Soc. 2008 Mar 5;130(9):2817-31. doi: 10.1021/ja0771033. Epub 2008 Feb 12.
10
Water, water everywhere--except where it matters?
Drug Discov Today. 2007 Jul;12(13-14):534-9. doi: 10.1016/j.drudis.2007.05.004. Epub 2007 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验