Panjikar Santosh, Mayerhofer Hubert, Tucker Paul A, Mueller-Dieckmann Jochen, de Sanctis Daniele
EMBL Hamburg Outstation, Germany.
Acta Crystallogr D Biol Crystallogr. 2011 Jan;67(Pt 1):32-44. doi: 10.1107/S090744491004299X. Epub 2010 Dec 16.
The most commonly used heavy-atom derivative, selenium, requires the use of a tunable beamline to access the Se K edge for experimental phasing using anomalous diffraction methods, whereas X-ray diffraction experiments for selenium-specific ultraviolet radiation-damage-induced phasing can be performed on fixed-wavelength beamlines or even using in-house X-ray sources. Several nonredundant X-ray diffraction data sets were collected from three different selenomethionine (Mse) derivatized protein crystals at energies far below the absorption edge before and after exposing the crystal to ultraviolet (UV) radiation using 266 nm lasers of flux density 1.7 × 10¹⁵ photons s⁻¹ mm⁻² for 10-50 min. A detailed analysis revealed that significant changes in diffracted intensities were induced by ultraviolet irradiation whilst retaining crystal isomorphism. These intensity changes allowed the crystal structures to be solved by the radiation-damage-induced phasing (RIP) technique. Inspection of the crystal structures and electron-density maps demonstrated that covalent bonds between selenium and carbon at all sites located in the core of the proteins or in a hydrophobic environment were much more susceptible to UV radiation-induced cleavage than other bonds typically present in Mse proteins. The rapid UV radiation-induced bond cleavage opens a reliable new paradigm for phasing when no tunable X-ray source is available. The behaviour of Mse derivatives of various proteins provides novel insights and an initial basis for understanding the mechanism of selenium-specific UV radiation damage.
最常用的重原子衍生物——硒,需要使用可调谐光束线来获取硒的K边,以便利用反常衍射方法进行实验定相,而针对硒特异性紫外线辐射损伤诱导定相的X射线衍射实验可以在固定波长光束线上进行,甚至可以使用实验室内部的X射线源。在使用通量密度为1.7×10¹⁵光子·秒⁻¹·毫米⁻²的266纳米激光将晶体暴露于紫外线(UV)辐射10 - 50分钟之前和之后,从三种不同的硒代蛋氨酸(Mse)衍生化蛋白质晶体中收集了几个非冗余的X射线衍射数据集,能量远低于吸收边。详细分析表明,紫外线照射会引起衍射强度的显著变化,同时保持晶体同构。这些强度变化使得晶体结构能够通过辐射损伤诱导定相(RIP)技术来解析。对晶体结构和电子密度图的检查表明,位于蛋白质核心或疏水环境中的所有位点上,硒与碳之间的共价键比Mse蛋白质中通常存在的其他键更容易受到紫外线辐射诱导的断裂。当没有可调谐X射线源时,快速的紫外线辐射诱导的键断裂为定相开辟了一种可靠的新范式。各种蛋白质的Mse衍生物的行为为理解硒特异性紫外线辐射损伤的机制提供了新的见解和初步基础。