Suppr超能文献

光学测量和数值模拟人牙周韧带的弹性模量。

Modulus of elasticity of human periodontal ligament by optical measurement and numerical simulation.

机构信息

Department of Orthodontics, Shandong University, Jinan, People’s Republic of China.

出版信息

Angle Orthod. 2011 Mar;81(2):229-36. doi: 10.2319/060710-311.1.

Abstract

OBJECTIVE

To determine the elastic modulus of the periodontal ligament (PDL).

MATERIALS AND METHODS

This study was carried out on eight human maxillary jaw segments containing central incisors. Displacements were measured under load using a laser sensing system, electronic speckle pattern interferometry (ESPI). Subsequently, finite element models presenting the same individual geometry as the respective autopsy material were developed by the software of Mimics and Ansys, based on scanning data from micro computed tomography (micro CT), to simulate tooth mobility numerically under the same force systems as were used in the experiment. Numerical force/deflection curves obtained from the models were fitted to the experimental curves by repeatedly calculating theoretical tooth deflections and varying the elasticity parameters of the human PDL.

RESULTS

A bilinear material parameter set was assumed to simulate tooth deflections. Mean values of E₁  =  0.04 MPa, E₂  =  0.16 MPa, and ultimate strain of ε₁₂  =  7.3% were derived for the elastic behavior of the PDL.

CONCLUSION

Force/deflection curves from the measurements showed a significant nonlinear behavior of elastic stiffness of the PDL. A bilinear material parameter set was suitably assumed to be a description of nonlinear properties of the PDL.

摘要

目的

确定牙周韧带(PDL)的弹性模量。

材料和方法

本研究在包含中切牙的 8 个人上颌牙槽段上进行。使用激光感应系统(电子散斑干涉测量法,ESPI)在加载下测量位移。随后,基于微计算机断层扫描(micro CT)的扫描数据,使用 Mimics 和 Ansys 软件开发了呈现与各自解剖材料相同个体几何形状的有限元模型,以模拟在与实验中相同的力系统下牙齿的移动。通过反复计算理论牙齿位移并改变人 PDL 的弹性参数,将从模型获得的数值力/挠度曲线拟合到实验曲线。

结果

假设双线性材料参数集来模拟牙齿位移。得出 PDL 的弹性行为的 E₁平均值为 0.04 MPa,E₂平均值为 0.16 MPa,和终极应变 ε₁₂为 7.3%。

结论

测量的力/挠度曲线显示 PDL 的弹性刚度具有显著的非线性行为。双线性材料参数集被合理地假设为 PDL 非线性特性的描述。

相似文献

3
Biomechanical time dependency of the periodontal ligament: a combined experimental and numerical approach.
Eur J Orthod. 2013 Dec;35(6):811-8. doi: 10.1093/ejo/cjs103. Epub 2013 Jan 12.
4
Numerical simulation of the biomechanical behaviour of multi-rooted teeth.
Eur J Orthod. 2005 Aug;27(4):333-9. doi: 10.1093/ejo/cji020. Epub 2005 Jun 16.
7
In vivo measurements and numerical analysis of the biomechanical characteristics of the human periodontal ligament.
Ann Anat. 2016 Jul;206:80-8. doi: 10.1016/j.aanat.2015.08.004. Epub 2015 Sep 12.
8
Estimation of periodontal ligament's equivalent mechanical parameters for finite element modeling.
Am J Orthod Dentofacial Orthop. 2013 Apr;143(4):486-91. doi: 10.1016/j.ajodo.2012.10.025.
9
Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
Comput Methods Biomech Biomed Engin. 2016;19(2):188-98. doi: 10.1080/10255842.2015.1006207. Epub 2015 Feb 4.
10
Numerical simulation and biomechanical analysis of an orthodontically treated periodontally damaged dentition.
J Orofac Orthop. 2013 Nov;74(6):480-93. doi: 10.1007/s00056-013-0182-8. Epub 2013 Nov 1.

引用本文的文献

1
The effects of different types of periodontal ligament material models on stresses computed using finite element models.
Am J Orthod Dentofacial Orthop. 2022 Dec;162(6):e328-e336. doi: 10.1016/j.ajodo.2022.09.008. Epub 2022 Oct 26.
3
Effect of Tension on Human Periodontal Ligament Cells: Systematic Review and Network Analysis.
Front Bioeng Biotechnol. 2021 Aug 27;9:695053. doi: 10.3389/fbioe.2021.695053. eCollection 2021.
4
Tensile testing of the mechanical behavior of the human periodontal ligament.
Biomed Eng Online. 2018 Nov 23;17(1):172. doi: 10.1186/s12938-018-0607-0.
5
Torque differences due to the material variation of the orthodontic appliance: a finite element study.
Prog Orthod. 2017 Dec;18(1):6. doi: 10.1186/s40510-017-0161-5. Epub 2017 Feb 27.
6
Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement.
Angle Orthod. 2017 Mar;87(2):183-192. doi: 10.2319/092615-651.1. Epub 2016 Aug 19.
8
Periodontal ligament strain induced by different orthodontic bracket removal techniques: nonlinear finite-element comparison study.
J Orofac Orthop. 2014 Jul;75(4):287-98. doi: 10.1007/s00056-014-0219-7. Epub 2014 Jul 24.

本文引用的文献

3
Numerical simulation of the biomechanical behaviour of multi-rooted teeth.
Eur J Orthod. 2005 Aug;27(4):333-9. doi: 10.1093/ejo/cji020. Epub 2005 Jun 16.
6
Tissue reaction to orthodontic tooth movement--a new paradigm.
Eur J Orthod. 2001 Dec;23(6):671-81. doi: 10.1093/ejo/23.6.671.
7
An investigation of cuspal deformation and delayed recovery after occlusal loading.
J Dent. 2001 Jul;29(5):363-70. doi: 10.1016/s0300-5712(01)00018-5.
9
[Semi-automatic generation of finite element meshes fo dental preparations].
Biomed Tech (Berl). 2000 Mar;45(3):62-9. doi: 10.1515/bmte.2000.45.3.62.
10
Determination of the centre of resistance in an upper human canine and idealized tooth model.
Eur J Orthod. 1999 Dec;21(6):633-48. doi: 10.1093/ejo/21.6.633.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验