Suppr超能文献

牙周韧带的生物力学特性:正畸牙齿移动。

Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement.

作者信息

Uhlir Richard, Mayo Virginia, Lin Pei Hua, Chen Si, Lee Yan-Ting, Hershey Garland, Lin Feng-Chang, Ko Ching-Chang

出版信息

Angle Orthod. 2017 Mar;87(2):183-192. doi: 10.2319/092615-651.1. Epub 2016 Aug 19.

Abstract

OBJECTIVE

To quantify the biomechanical properties of the bovine periodontal ligament (PDL) in postmortem sections and to apply these properties to study orthodontic tooth intrusion using finite element analysis (FEA). We hypothesized that PDL's property inherited heterogeneous (anatomical dependency) and nonlinear stress-strain behavior that could aid FEA to delineate force vectors with various rectangular archwires.

MATERIALS AND METHODS

A dynamic mechanical analyzer was used to quantify the stress-strain behavior of bovine PDL. Uniaxial tension tests using three force levels (0.5, 1, and 3 N) and samples from two anatomical locations (circumferential and longitudinal) were performed to calculate modulus. The Mooney-Rivlin hyperelastic (MRH) model was applied to the experimental data and used in an FEA of orthodontic intrusion rebounded via a 0.45-mm step bend with three archwire configurations of two materials (stainless steel and TMA).

RESULTS

Force levels and anatomical location were statistically significant in their effects on modulus (P < .05). The apical part had a greater stiffness than did the middle part. The MRH model was found to approximate the experimental data well (r = 0.99), and it demonstrated a reasonable stress-strain outcome within the PDL and bone for FEA intrusion simulation. The force acting on the tooth increased five times from the 0.016 × 0.022-inch TMA to the 0.019 × 0.025-inch stainless steel.

CONCLUSIONS

The PDL is a nonhomogeneous tissue in which the modulus changed in relation to location. PDL nonlinear constitutive model estimated quantitative force vectors for the first time to compare intrusive tooth movement in 3-D space in response to various rectangular archwires.

摘要

目的

量化牛牙周膜(PDL)在死后切片中的生物力学特性,并将这些特性应用于使用有限元分析(FEA)研究正畸牙齿侵入。我们假设PDL的特性具有非均匀性(解剖学依赖性)和非线性应力应变行为,这有助于FEA描绘使用各种矩形弓丝时的力向量。

材料与方法

使用动态力学分析仪量化牛PDL的应力应变行为。进行单轴拉伸试验,采用三种力水平(0.5、1和3 N),并从两个解剖位置(圆周和纵向)取样以计算模量。将穆尼-里夫林超弹性(MRH)模型应用于实验数据,并用于通过0.45-mm阶跃弯曲反弹的正畸侵入的FEA,该弯曲采用两种材料(不锈钢和TMA)的三种弓丝配置。

结果

力水平和解剖位置对模量的影响具有统计学意义(P <.05)。根尖部分比中部具有更大的刚度。发现MRH模型与实验数据拟合良好(r = 0.99),并且在FEA侵入模拟中,它在PDL和骨内显示出合理的应力应变结果。作用在牙齿上的力从0.016×0.022英寸的TMA增加到0.019×0.025英寸的不锈钢时增加了五倍。

结论

PDL是一种非均匀组织,其模量随位置而变化。PDL非线性本构模型首次估计了定量力向量,以比较在三维空间中响应各种矩形弓丝的侵入性牙齿移动。

相似文献

1
Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement.
Angle Orthod. 2017 Mar;87(2):183-192. doi: 10.2319/092615-651.1. Epub 2016 Aug 19.
2
Investigation of effective intrusion and extrusion force for maxillary canine using finite element analysis.
Comput Methods Biomech Biomed Engin. 2019 Dec;22(16):1294-1302. doi: 10.1080/10255842.2019.1661390. Epub 2019 Sep 5.
3
Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study.
Arch Oral Biol. 2016 Jun;66:98-107. doi: 10.1016/j.archoralbio.2016.02.012. Epub 2016 Feb 23.
5
Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement.
Am J Orthod Dentofacial Orthop. 2011 Jan;139(1):e59-71. doi: 10.1016/j.ajodo.2010.09.020.
7
Analytically determined mechanical properties of, and models for the periodontal ligament: critical review of literature.
J Biomech. 2012 Jan 3;45(1):9-16. doi: 10.1016/j.jbiomech.2011.09.020. Epub 2011 Oct 19.
8
A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading.
Am J Orthod Dentofacial Orthop. 2003 Jun;123(6):657-65. doi: 10.1016/s0889-5406(03)00164-1.
10
Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
Comput Methods Biomech Biomed Engin. 2016;19(2):188-98. doi: 10.1080/10255842.2015.1006207. Epub 2015 Feb 4.

引用本文的文献

2
Compression Promotes the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Regulating METTL14-mediated IGF1.
Curr Stem Cell Res Ther. 2024;19(8):1120-1128. doi: 10.2174/011574888X244047231012103752.
3
Construction of Human Periodontal Ligament Constitutive Model Based on Collagen Fiber Content.
Materials (Basel). 2023 Oct 6;16(19):6582. doi: 10.3390/ma16196582.
4
Comparative evaluation of transpalatal arch and vertical holding appliance at different heights.
J Taibah Univ Med Sci. 2021 Dec 23;17(3):401-407. doi: 10.1016/j.jtumed.2021.11.004. eCollection 2022 Jun.
5
A multi-patient analysis of the center of rotation trajectories using finite element models of the human mandible.
PLoS One. 2021 Nov 15;16(11):e0259794. doi: 10.1371/journal.pone.0259794. eCollection 2021.
8
Comparative Numerical Analysis between Two Types of Orthodontic Wire for the Lingual Technique, Using the Finite Element Method.
Appl Bionics Biomech. 2021 Mar 25;2021:6658039. doi: 10.1155/2021/6658039. eCollection 2021.

本文引用的文献

1
A novel biomechanical model assessing continuous orthodontic archwire activation.
Am J Orthod Dentofacial Orthop. 2013 Feb;143(2):281-90. doi: 10.1016/j.ajodo.2012.06.019.
4
Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament.
Dent Mater. 2009 Oct;25(10):1285-92. doi: 10.1016/j.dental.2009.03.014. Epub 2009 Jun 27.
6
A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo.
Skin Res Technol. 2008 May;14(2):152-64. doi: 10.1111/j.1600-0846.2007.00269.x.
7
In vitro time-dependent response of periodontal ligament to mechanical loading.
J Appl Physiol (1985). 2005 Dec;99(6):2369-78. doi: 10.1152/japplphysiol.00486.2005. Epub 2005 Aug 18.
8
The finite element method: a tool to study orthodontic tooth movement.
J Dent Res. 2005 May;84(5):428-33. doi: 10.1177/154405910508400506.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验