Suppr超能文献

信息容量和传输在具有神经元雪崩的平衡皮层网络中达到最大化。

Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches.

机构信息

Section on Critical Brain Dynamics, Laboratory of Systems Neuroscience, National Institutes of Mental Health, Bethesda, Maryland 20892, USA.

出版信息

J Neurosci. 2011 Jan 5;31(1):55-63. doi: 10.1523/JNEUROSCI.4637-10.2011.

Abstract

The repertoire of neural activity patterns that a cortical network can produce constrains the ability of the network to transfer and process information. Here, we measured activity patterns obtained from multisite local field potential recordings in cortex cultures, urethane-anesthetized rats, and awake macaque monkeys. First, we quantified the information capacity of the pattern repertoire of ongoing and stimulus-evoked activity using Shannon entropy. Next, we quantified the efficacy of information transmission between stimulus and response using mutual information. By systematically changing the ratio of excitation/inhibition (E/I) in vitro and in a network model, we discovered that both information capacity and information transmission are maximized at a particular intermediate E/I, at which ongoing activity emerges as neuronal avalanches. Next, we used our in vitro and model results to correctly predict in vivo information capacity and interactions between neuronal groups during ongoing activity. Close agreement between our experiments and model suggest that neuronal avalanches and peak information capacity arise because of criticality and are general properties of cortical networks with balanced E/I.

摘要

皮质网络产生的神经活动模式的范围限制了网络传输和处理信息的能力。在这里,我们测量了皮质培养物、氨基甲酸乙酯麻醉大鼠和清醒猕猴的多部位局部场电位记录中获得的活动模式。首先,我们使用香农熵来量化正在进行的和刺激诱发的活动的模式范围的信息容量。接下来,我们使用互信息来量化刺激和反应之间信息传输的效率。通过系统地改变体外和网络模型中的兴奋/抑制比 (E/I),我们发现信息容量和信息传输都在特定的中间 E/I 处最大化,在这个 E/I 处,正在进行的活动表现为神经元级联。接下来,我们使用我们的体外和模型结果来正确预测体内的信息容量和在正在进行的活动期间神经元群体之间的相互作用。我们的实验和模型之间的紧密一致表明,神经元级联和峰值信息容量的出现是由于临界性,并且是具有平衡 E/I 的皮质网络的一般特性。

相似文献

1
Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches.
J Neurosci. 2011 Jan 5;31(1):55-63. doi: 10.1523/JNEUROSCI.4637-10.2011.
2
Maximal variability of phase synchrony in cortical networks with neuronal avalanches.
J Neurosci. 2012 Jan 18;32(3):1061-72. doi: 10.1523/JNEUROSCI.2771-11.2012.
4
Neuronal avalanches imply maximum dynamic range in cortical networks at criticality.
J Neurosci. 2009 Dec 9;29(49):15595-600. doi: 10.1523/JNEUROSCI.3864-09.2009.
5
Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4.
J Neurophysiol. 2005 Jan;93(1):467-80. doi: 10.1152/jn.00520.2004. Epub 2004 Aug 18.
6
Maturation of cultured hippocampal slices results in increased excitability in granule cells.
Int J Dev Neurosci. 2005 Feb;23(1):65-73. doi: 10.1016/j.ijdevneu.2004.08.003.
9
Abnormal network activity in a targeted genetic model of human double cortex.
J Neurosci. 2009 Jan 14;29(2):313-27. doi: 10.1523/JNEUROSCI.4093-08.2009.
10
Cell-specific activity-dependent fractionation of layer 2/3→5B excitatory signaling in mouse auditory cortex.
J Neurosci. 2015 Feb 18;35(7):3112-23. doi: 10.1523/JNEUROSCI.0836-14.2015.

引用本文的文献

3
Balancing excitation and inhibition: The role of neural network dynamics in working memory gating.
Imaging Neurosci (Camb). 2024 Dec 2;2. doi: 10.1162/imag_a_00380. eCollection 2024.
4
Inferring global exponents in subsampled neural systems.
iScience. 2025 Jul 3;28(8):113049. doi: 10.1016/j.isci.2025.113049. eCollection 2025 Aug 15.
6
Excess prenatal folic acid supplementation alters cortical gene expression networks and electrophysiology.
bioRxiv. 2025 May 11:2025.05.07.652681. doi: 10.1101/2025.05.07.652681.
8
Network structure influences self-organized criticality in neural networks with dynamical synapses.
Front Syst Neurosci. 2025 Jun 18;19:1590743. doi: 10.3389/fnsys.2025.1590743. eCollection 2025.
9
Is criticality a unified setpoint of brain function?
Neuron. 2025 Aug 20;113(16):2582-2598.e2. doi: 10.1016/j.neuron.2025.05.020. Epub 2025 Jun 23.
10
Genetic contributions to brain criticality and its relationship with human cognitive functions.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2417010122. doi: 10.1073/pnas.2417010122. Epub 2025 Jun 23.

本文引用的文献

1
Stimulus onset quenches neural variability: a widespread cortical phenomenon.
Nat Neurosci. 2010 Mar;13(3):369-78. doi: 10.1038/nn.2501. Epub 2010 Feb 21.
2
Design of a trichromatic cone array.
PLoS Comput Biol. 2010 Feb 12;6(2):e1000677. doi: 10.1371/journal.pcbi.1000677.
3
The asynchronous state in cortical circuits.
Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.
4
Decorrelated neuronal firing in cortical microcircuits.
Science. 2010 Jan 29;327(5965):584-7. doi: 10.1126/science.1179867.
5
Neuronal avalanches imply maximum dynamic range in cortical networks at criticality.
J Neurosci. 2009 Dec 9;29(49):15595-600. doi: 10.1523/JNEUROSCI.3864-09.2009.
6
Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15921-6. doi: 10.1073/pnas.0904089106. Epub 2009 Aug 26.
7
Generating coherent patterns of activity from chaotic neural networks.
Neuron. 2009 Aug 27;63(4):544-57. doi: 10.1016/j.neuron.2009.07.018.
9
Spontaneous events outline the realm of possible sensory responses in neocortical populations.
Neuron. 2009 May 14;62(3):413-25. doi: 10.1016/j.neuron.2009.03.014.
10
Ruling out and ruling in neural codes.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5936-41. doi: 10.1073/pnas.0900573106. Epub 2009 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验