Suppr超能文献

用于多部位局部场电位、脑电图和尖峰序列记录快速信息分析的工具箱。

A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings.

作者信息

Magri Cesare, Whittingstall Kevin, Singh Vanessa, Logothetis Nikos K, Panzeri Stefano

机构信息

Italian Institute of Technology, Department of Robotics, Brain and Cognitive Sciences, I-16163 Genoa, Italy.

出版信息

BMC Neurosci. 2009 Jul 16;10:81. doi: 10.1186/1471-2202-10-81.

Abstract

BACKGROUND

Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses.

RESULTS

Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies.

CONCLUSION

The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.

摘要

背景

信息论是研究大脑如何编码感觉信息的一个越来越受欢迎的框架。尽管它被广泛用于分析单个神经元和小神经群体的尖峰序列,但到目前为止,它在分析其他类型的神经生理信号(脑电图、局部场电位、血氧水平依赖信号)方面的应用仍然相对有限。这是由于影响信息计算的有限采样偏差、消除偏差技术的复杂性以及缺乏用于多维响应信息分析的公开可用的快速例程。

结果

在这里,我们介绍了一个新的基于C和Matlab的信息论工具箱,专门为神经科学数据开发。这个工具箱实现了一种新颖的计算优化算法,用于估计神经科学应用中使用的许多主要信息论量和偏差校正技术。我们通过几种方式对工具箱进行了说明和测试。首先,我们验证这些算法即使在使用有限数量的实验数据时,也能对模拟脑信号(即局部场电位、脑电图或血氧水平依赖信号)携带的信息提供准确且无偏差的估计。这项测试很重要,因为现有的算法到目前为止主要是在尖峰序列上进行测试的。其次,我们将工具箱应用于分析一名观看自然电影的受试者记录的脑电图,并确定携带最多视觉信息的电极位置、频率和信号特征。第三,我们解释了如何使用工具箱将神经信号不同特征携带的信息分解为不同的成分,这些成分反映了神经信号各部分之间的相关性对编码做出贡献的不同方式。我们通过分析在呈现自然主义电影期间从初级视觉皮层记录的局部场电位来说明这种分解。

结论

这里介绍的新工具箱实现了神经数据信息论分析中使用的最相关量的快速且数据稳健的计算。该工具箱可以很容易地在Matlab中使用,Matlab是大多数神经科学实验室用于神经数据采集、预处理和绘图的环境。因此,它可以显著扩大信息论在神经科学中的应用领域,并带来关于神经编码方面的新发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f31a/2723115/5c91cf6800c3/1471-2202-10-81-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验