Suppr超能文献

网络结构影响具有动态突触的神经网络中的自组织临界性。

Network structure influences self-organized criticality in neural networks with dynamical synapses.

作者信息

Sugimoto Yoshiki A, Yadohisa Hiroshi, Abe Masato S

机构信息

Graduate School of Culture and Information Science, Doshisha University, Kyotanabe, Kyoto, Japan.

Faculty of Culture and Information Science, Doshisha University, Kyotanabe, Kyoto, Japan.

出版信息

Front Syst Neurosci. 2025 Jun 18;19:1590743. doi: 10.3389/fnsys.2025.1590743. eCollection 2025.

Abstract

The brain criticality hypothesis has been a central research topic in theoretical neuroscience for two decades. This hypothesis suggests that the brain operates near the critical point at the boundary between order and disorder, where it acquires its information-processing capabilities. The mechanism that maintains this critical state has been proposed as a feedback system known as self-organized criticality (SOC); brain parameters, such as synaptic plasticity, are regulated internally without external adjustment. Therefore, clarifying how SOC occurs may provide insights into the mechanisms that maintain brain function and cause brain disorders. From the standpoint of neural network structures, the topology of neural circuits also plays a crucial role in information processing, with healthy neural networks exhibiting small world, scale-free, and modular characteristics. However, how these network structures affect SOC remains poorly understood. In this study, we conducted numerical simulations using a simplified neural network model to investigate how network structure may influence SOC. Our results reveal that the time scales at which synaptic plasticity operates to achieve a critical state differ depending on the network structure. Additionally, we observed Dragon king phenomena associated with abnormal neural activity, depending on the network structure and synaptic plasticity time scales. Notably, Dragon king was observed over a wide range of synaptic plasticity time scales in scale-free networks with high-degree hub nodes. These findings highlight the potential importance of neural network topology in shaping SOC dynamics in simplified models of neural systems.

摘要

二十年来,大脑临界性假说一直是理论神经科学的核心研究课题。该假说认为,大脑在秩序与混乱边界的临界点附近运作,在此获取其信息处理能力。维持这种临界状态的机制被认为是一种名为自组织临界性(SOC)的反馈系统;大脑参数,如突触可塑性,在没有外部调节的情况下进行内部调节。因此,阐明SOC如何发生可能有助于深入了解维持大脑功能和导致脑部疾病的机制。从神经网络结构的角度来看,神经回路的拓扑结构在信息处理中也起着关键作用,健康的神经网络具有小世界、无标度和模块化的特征。然而,这些网络结构如何影响SOC仍知之甚少。在本研究中,我们使用简化的神经网络模型进行了数值模拟,以研究网络结构如何影响SOC。我们的结果表明,突触可塑性达到临界状态的运作时间尺度因网络结构而异。此外,根据网络结构和突触可塑性时间尺度,我们观察到与异常神经活动相关的龙王现象。值得注意的是,在具有高度枢纽节点的无标度网络中,在广泛的突触可塑性时间尺度上都观察到了龙王现象。这些发现凸显了神经网络拓扑结构在塑造简化神经系统模型中SOC动态方面的潜在重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c00/12213684/37bb97151e1a/fnsys-19-1590743-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验