College of Optical Sciences, University of Arizona, 1630 E. University Boulevard, Tucson, Arizona 85721, USA.
Opt Lett. 2011 Jan 1;36(1):61-3. doi: 10.1364/OL.36.000061.
We have developed a stable, high-power, single-frequency optically pumped external-cavity semiconductor laser system and generate up to 125 mW of power at 253.7 nm using successive frequency doubling stages. We demonstrate precision scanning and control of the laser frequency in the UV to be used for cooling and trapping of mercury atoms. With active frequency stabilization, a linewidth of <60 kHz is measured in the IR. Doppler-free spectroscopy and stabilization to the 6(1)S(0)-6(3)P(1) mercury transition at 253.7 nm is demonstrated. To our knowledge, this is the first demonstration of Doppler-free spectroscopy in the deep UV based on a frequency-quadrupled, high-power (>1 W) optically pumped semiconductor laser system. The results demonstrate the utility of these devices for precision spectroscopy at deep-UV wavelengths.
我们开发了一种稳定、高功率、单频光泵外腔半导体激光系统,通过连续倍频阶段在 253.7nm 处产生高达 125mW 的功率。我们演示了激光频率在紫外区的精确扫描和控制,用于冷却和捕获汞原子。在红外区,通过主动频率稳定,测量到的线宽<60kHz。我们演示了基于四倍频、高功率(>1W)光泵浦半导体激光系统的 253.7nm 处汞的 6(1)S(0)-6(3)P(1)跃迁的无多普勒光谱和稳定。据我们所知,这是首次基于四倍频、高功率(>1W)光泵浦半导体激光系统在深紫外区进行无多普勒光谱的演示。这些结果表明这些器件在深紫外波长精密光谱学中的实用性。