Suppr超能文献

股外侧皮下脂肪评估:皮褶卡尺与超声成像的比较。

Subcutaneous thigh fat assessment: a comparison of skinfold calipers and ultrasound imaging.

机构信息

University of Virginia, Charlottesville, VA, USA.

出版信息

J Athl Train. 2011 Jan-Feb;46(1):50-4. doi: 10.4085/1062-6050-46.1.50.

Abstract

CONTEXT

Skinfold calipers (SC) typically are used to determine subcutaneous fat thicknesses. Identifying the exact separation of muscle and fat can complicate measurements. Ultrasound imaging (USI) might provide a better technique for analyzing subcutaneous fat thicknesses.

OBJECTIVE

To compare measurements from SC and USI in assessing subcutaneous thigh fat thickness.

DESIGN

Descriptive laboratory study.

SETTING

Laboratory.

PATIENTS AND OTHER PARTICIPANTS

Twenty healthy adults (13 men, 7 women; age  =  26.9 ± 5.4 years, height  =  173.9 ± 7.3 cm, mass  =  77.4 ± 16.1 kg) participated.

INTERVENTION(S): Participants were seated in 90° of knee flexion and 85° of trunk extension. A standardized template was used to identify measurement sites over the vastus medialis obliquus (VMO), distal rectus femoris (dRF), proximal rectus femoris (pRF), and vastus lateralis (VL). Three measurements at each of the 4 sites were made in random order and were averaged for each measurement tool by the same investigator.

MAIN OUTCOME MEASURE(S): Fat thickness was measured in millimeters with SC and USI. Measurements at each site were compared using Pearson product moment correlations and Bland-Altman plots.

RESULTS

Strong correlations between measures were found at the VMO (r  =  .90, P < .001), dRF (r  =  .93, P < .001), pRF (r  =  .93, P < .001), and VL (r  =  .91, P < .001). Mean differences between measures ranged from 1.7 ± 2.4 mm (dRF) to 3.7 ± 2.6 mm (pRF), indicating that the SC resulted in larger thicknesses compared with USI. Limits of agreement, as illustrated by the Bland-Altman plots, were fairly wide at each site: from -3.38 mm to 7.74 mm at the VMO, from -3.04 mm to 6.52 mm at the dRF, from -1.53 mm to 8.87 mm at the pRF, and from -3.73 mm to 8.15 mm at the VL. All plots except for the VL demonstrated increasing overestimation via the SC as fat thicknesses increased.

CONCLUSIONS

We found strong correlations between the SC and USI; however, the large limits of agreement and increasing mean differences with larger fat thicknesses were a concern in terms of using this tool. When measuring subcutaneous fat thickness of the thigh, SC tended to overestimate thickness in individuals with higher fat values.

摘要

背景

皮褶卡尺(SC)通常用于确定皮下脂肪厚度。确定肌肉和脂肪的确切分离可能会使测量变得复杂。超声成像(USI)可能是分析皮下脂肪厚度的更好技术。

目的

比较 SC 和 USI 在评估大腿皮下脂肪厚度方面的测量结果。

设计

描述性实验室研究。

地点

实验室。

患者和其他参与者

20 名健康成年人(13 名男性,7 名女性;年龄 26.9±5.4 岁,身高 173.9±7.3cm,体重 77.4±16.1kg)参加了研究。

干预措施

参与者坐在 90°的膝关节屈曲和 85°的躯干伸展位。使用标准化模板在股直肌外侧(VMO)、股直肌远端(dRF)、股直肌近端(pRF)和股外侧肌(VL)上确定测量部位。在每个部位以随机顺序进行 3 次测量,并由同一位研究者对每个测量工具进行平均。

主要观察指标

使用 SC 和 USI 测量脂肪厚度。使用 Pearson 乘积矩相关和 Bland-Altman 图比较各部位的测量值。

结果

在 VMO(r=.90,P<0.001)、dRF(r=.93,P<0.001)、pRF(r=.93,P<0.001)和 VL(r=.91,P<0.001)部位发现测量值之间存在很强的相关性。测量值之间的平均差异范围从 1.7±2.4mm(dRF)到 3.7±2.6mm(pRF),表明 SC 测量的厚度比 USI 测量的厚度大。Bland-Altman 图所示的一致性界限在每个部位都相当宽:在 VMO 处为-3.38mm 至 7.74mm,在 dRF 处为-3.04mm 至 6.52mm,在 pRF 处为-1.53mm 至 8.87mm,在 VL 处为-3.73mm 至 8.15mm。除了 VL 之外的所有图都表明,随着脂肪厚度的增加,SC 的测量值会出现越来越大的高估。

结论

我们发现 SC 和 USI 之间存在很强的相关性;然而,较大的一致性界限和随着脂肪厚度增加而增加的平均差异是使用该工具的一个关注点。在测量大腿皮下脂肪厚度时,SC 往往会高估脂肪值较高的个体的厚度。

相似文献

1
Subcutaneous thigh fat assessment: a comparison of skinfold calipers and ultrasound imaging.
J Athl Train. 2011 Jan-Feb;46(1):50-4. doi: 10.4085/1062-6050-46.1.50.
3
5
Assessing subcutaneous adipose tissue by simple and portable field instruments: Skinfolds versus A-mode ultrasound measurements.
PLoS One. 2018 Nov 29;13(11):e0205226. doi: 10.1371/journal.pone.0205226. eCollection 2018.
8
Age-, sex-, and region-specific differences in skeletal muscle size and quality.
Appl Physiol Nutr Metab. 2020 Nov;45(11):1253-1260. doi: 10.1139/apnm-2020-0114. Epub 2020 May 25.
10
Examination of Subcutaneous Tissue Thickness in the Thigh Site for Intramuscular Injection in Obese Individuals.
J Ultrasound Med. 2015 Sep;34(9):1657-62. doi: 10.7863/ultra.15.14.09005. Epub 2015 Aug 12.

引用本文的文献

5
Effect of Athletic Training on Fatigue During Neuromuscular Electrical Stimulation.
Front Sports Act Living. 2022 Jun 14;4:894395. doi: 10.3389/fspor.2022.894395. eCollection 2022.
9
Comparison of the Three-Site and Seven-Site Measurements in Female Collegiate Athletes Using BodyMetrix™.
Int J Exerc Sci. 2021 Apr 1;14(4):230-238. doi: 10.70252/MBCK9241. eCollection 2021.
10

本文引用的文献

1
Ultrasound measurements of visceral and subcutaneous abdominal thickness to predict abdominal adiposity among older men and women.
Obesity (Silver Spring). 2010 Mar;18(3):625-31. doi: 10.1038/oby.2009.309. Epub 2009 Sep 24.
3
Ultrasound techniques applied to body fat measurement in male and female athletes.
J Athl Train. 2009 Mar-Apr;44(2):142-7. doi: 10.4085/1062-6050-44.2.142.
4
Comparisons of cubed ice, crushed ice, and wetted ice on intramuscular and surface temperature changes.
J Athl Train. 2009 Mar-Apr;44(2):136-41. doi: 10.4085/1062-6050-44.2.136.
5
The effect of the subcutaneous fat on the transfer of current through skin and into muscle.
Med Eng Phys. 2008 Nov;30(9):1168-76. doi: 10.1016/j.medengphy.2008.02.009. Epub 2008 Apr 8.
6
Rehabilitative ultrasound imaging: understanding the technology and its applications.
J Orthop Sports Phys Ther. 2007 Aug;37(8):434-49. doi: 10.2519/jospt.2007.2350.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验