Rogers E J, Ambulos N P, Lovett P S
Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228.
J Bacteriol. 1990 Nov;172(11):6282-90. doi: 10.1128/jb.172.11.6282-6290.1990.
Inducible cat and erm genes are regulated by translational attenuation. In this regulatory model, gene activation results from chloramphenicol- or erythromycin-dependent stalling of a ribosome at a precise site in the leader region of cat or erm transcripts. The stalled ribosome is believed to destabilize a downstream region of RNA secondary structure that sequesters the ribosome-binding site for the cat or erm coding sequence. Here we show that the ribosome stall sites in cat and erm leader mRNAs, designated crb and erb, respectively, are largely complementary to an internal sequence in 16S rRNA of Bacillus subtilis. A tetracycline resistance gene that is likely regulated by translational attenuation also contains a sequence in its leader mRNA, trb, which is complementary to a sequence in 16S rRNA that overlaps with the crb and erb complements. An in vivo assay is described which is designed to test whether 16S rRNA of a translating ribosome can interact with the crb sequence in mRNA in an inducer-dependent reaction. The assay compares the growth rate of cells expressing crb-86 with the growth rate of cells lacking crb-86 in the presence of subinhibitory levels of inducers of cat-86, chloramphenicol, fluorothiamphenicol, amicetin, or erythromycin. Under these conditions, crb-86 retarded growth. Deletion of the crb-86 sequence, insertion of ochre mutations into crb-86, or synonymous codon changes in crb-86 that decreased its complementarity with 16S rRNA all eliminated from detection inducer-dependent growth retardation. Lincomycin, a ribosomally targeted antibiotic that is not an inducer of cat-86, failed to selectively retard the growth of cells expressing crb-86. We suggest that cat-86 inducers enable the crb-86 sequence in mRNA to base pair with 16S rRNA of translating ribosome. When the base pairing is extensive, as with crb-86, ribosomes become transiently trapped on crb and are temporarily withdrawn from protein synthesis to the extent that growth rate declines. Site-specific positioning of an antibiotic-stalled ribosome is a hallmark of the translational attenuation model. The proposed rRNA-mRNA interaction may precisely position the ribosome on the stall site and perhaps contributes to stabilizing the ribosome leader mRNA complex.
可诱导的cat和erm基因受翻译衰减调控。在这种调控模式中,基因激活源于氯霉素或红霉素依赖的核糖体在cat或erm转录本前导区的精确位点处停滞。据信,停滞的核糖体使RNA二级结构的下游区域不稳定,该区域封存了cat或erm编码序列的核糖体结合位点。在此,我们表明cat和erm前导mRNA中的核糖体停滞位点,分别命名为crb和erb,在很大程度上与枯草芽孢杆菌16S rRNA中的一个内部序列互补。一个可能受翻译衰减调控的四环素抗性基因在其前导mRNA中也含有一个序列trb,它与16S rRNA中与crb和erb互补序列重叠的一个序列互补。本文描述了一种体内试验,旨在测试正在翻译的核糖体的16S rRNA是否能在诱导剂依赖的反应中与mRNA中的crb序列相互作用。该试验比较了在亚抑制水平的cat - 86诱导剂(氯霉素、氟甲砜霉素、阿贝卡星或红霉素)存在下,表达crb - 86的细胞与缺乏crb - 86的细胞的生长速率。在这些条件下,crb - 86会延迟生长。删除crb - 86序列、在crb - 86中插入赭石突变或改变crb - 86中的同义密码子以降低其与16S rRNA的互补性,均消除了诱导剂依赖的生长延迟现象。林可霉素是一种作用于核糖体的抗生素,但不是cat - 86的诱导剂,它不能选择性地延迟表达crb - 86的细胞生长。我们认为,cat - 86诱导剂使mRNA中的crb - 86序列与正在翻译的核糖体的16S rRNA形成碱基对。当碱基对广泛存在时,如crb - 86的情况,核糖体会暂时被困在crb上,并暂时从蛋白质合成中撤出,导致生长速率下降。抗生素停滞核糖体的位点特异性定位是翻译衰减模型的一个标志。所提出的rRNA - mRNA相互作用可能将核糖体精确地定位在停滞位点上,并可能有助于稳定核糖体前导mRNA复合物。