Rogers E J, Kim U J, Ambulos N P, Lovett P S
Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228.
J Bacteriol. 1990 Jan;172(1):110-5. doi: 10.1128/jb.172.1.110-115.1990.
Genes encoding chloramphenicol acetyltransferase in gram-positive bacteria are induced by chloramphenicol. Induction reflects an ability of the drug to stall a ribosome at a specific site in cat leader mRNA. Ribosome stalling at this site alters downstream RNA secondary structure, thereby unmasking the ribosome-binding site for the cat coding sequence. Here, we show that ribosome stalling in the cat-86 leader is a function of leader codons 2 through 5 and that stalling requires these codons to be presented in the correct reading frame. Codons 2 through 5 specify Val-Lys-Thr-Asp. Insertion of a second copy of the stall sequence 5' to the authentic stall sequence diminished cat-86 induction fivefold. Thus, the stall sequence can function in ribosome stalling when the stall sequence is displaced from the downstream RNA secondary structure. We suggest that the stall sequence may function in cat induction at two levels. First, the tetrapeptide specified by the stall sequence likely plays an active role in the induction strategy, on the basis of previously reported genetic suppression studies (W. W. Mulbry, N. P. Ambulos, Jr., and P.S. Lovett, J. Bacteriol. 171:5322-5324, 1989). Second, we show that embedded within the stall sequence of cat leaders is a region which is complementary to a sequence internal in 16S rRNA of Bacillus subtilis. This complementarity may guide a ribosome to the proper position on leader mRNA or potentiate the stalling event, or both. The region of complementarity is absent from Escherichia coli 16S rRNA, and cat genes induce poorly, or not at all, in E. coli.
革兰氏阳性菌中编码氯霉素乙酰转移酶的基因由氯霉素诱导。诱导反映了药物使核糖体在cat前导mRNA的特定位点停滞的能力。核糖体在此位点的停滞会改变下游RNA的二级结构,从而暴露cat编码序列的核糖体结合位点。在这里,我们表明cat - 86前导序列中的核糖体停滞是前导密码子2至5的功能,并且停滞要求这些密码子以正确的阅读框呈现。密码子2至5指定缬氨酸 - 赖氨酸 - 苏氨酸 - 天冬氨酸。在真实停滞序列的5'端插入第二个停滞序列拷贝使cat - 86的诱导降低了五倍。因此,当停滞序列从下游RNA二级结构移位时,停滞序列仍可在核糖体停滞中发挥作用。我们认为停滞序列可能在cat诱导的两个层面发挥作用。首先,基于先前报道的基因抑制研究(W. W. Mulbry,N. P. Ambulos,Jr.,和P. S. Lovett,《细菌学杂志》171:5322 - 5324,1989),停滞序列指定的四肽可能在诱导策略中发挥积极作用。其次,我们表明在cat前导序列的停滞序列中嵌入了一个与枯草芽孢杆菌16S rRNA内部序列互补的区域。这种互补性可能引导核糖体到达前导mRNA上的正确位置或增强停滞事件,或两者兼而有之。大肠杆菌16S rRNA中不存在互补区域,并且cat基因在大肠杆菌中的诱导效果很差或根本不诱导。