Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
Neuron. 2011 Jan 13;69(1):147-58. doi: 10.1016/j.neuron.2010.12.007.
Locusts possess an identified neuron, the descending contralateral movement detector (DCMD), conveying visual information about impending collision from the brain to thoracic motor centers. We built a telemetry system to simultaneously record, in freely behaving animals, the activity of the DCMD and of motoneurons involved in jump execution. Cocontraction of antagonistic leg muscles, a required preparatory phase, was triggered after the DCMD firing rate crossed a threshold. Thereafter, the number of DCMD spikes predicted precisely motoneuron activity and jump occurrence. Additionally, the time of DCMD peak firing rate predicted that of jump. Ablation experiments suggest that the DCMD, together with a nearly identical ipsilateral descending neuron, is responsible for the timely execution of the escape. Thus, three distinct features that are multiplexed in a single neuron's sensory response to impending collision-firing rate threshold, peak firing time, and spike count-probably control three distinct motor aspects of escape behaviors.
蝗虫拥有一个已确定的神经元,即下行对侧运动探测器(DCMD),它将关于即将发生碰撞的视觉信息从大脑传递到胸部运动中枢。我们构建了一个遥测系统,以便在自由活动的动物中同时记录 DCMD 的活动以及参与跳跃执行的运动神经元的活动。DCMD 放电率超过阈值后,触发拮抗腿肌肉的共收缩,这是一个必需的预备阶段。此后,DCMD 尖峰的数量精确预测了运动神经元的活动和跳跃的发生。此外,DCMD 峰值放电率的时间预测了跳跃的时间。消融实验表明,DCMD 与几乎相同的同侧下行神经元一起,负责及时执行逃避反应。因此,在单个神经元对即将发生的碰撞的感觉反应中,三个不同的特征——放电率阈值、峰值放电时间和尖峰计数——可能控制了逃避行为的三个不同的运动方面。