Suppr超能文献

碰撞检测作为一种感觉运动整合的模型。

Collision detection as a model for sensory-motor integration.

机构信息

Department of Biology, McGill University, Montreal, Quebec, H3A-1B1, Canada.

出版信息

Annu Rev Neurosci. 2011;34:1-19. doi: 10.1146/annurev-neuro-061010-113632.

Abstract

Visually guided collision avoidance is critical for the survival of many animals. The execution of successful collision-avoidance behaviors requires accurate processing of approaching threats by the visual system and signaling of threat characteristics to motor circuits to execute appropriate motor programs in a timely manner. Consequently, visually guided collision avoidance offers an excellent model with which to study the neural mechanisms of sensory-motor integration in the context of a natural behavior. Neurons that selectively respond to approaching threats and brain areas processing them have been characterized across many species. In locusts in particular, the underlying sensory and motor processes have been analyzed in great detail: These animals possess an identified neuron, called the LGMD, that responds selectively to approaching threats and conveys that information through a second identified neuron, the DCMD, to motor centers, generating escape jumps. A combination of behavioral and in vivo electrophysiological experiments has unraveled many of the cellular and network mechanisms underlying this behavior.

摘要

视觉引导的避障对于许多动物的生存至关重要。成功执行避障行为需要视觉系统准确处理接近的威胁,并将威胁特征信号传递给运动电路,以便及时执行适当的运动程序。因此,视觉引导的避障为研究自然行为背景下的感觉运动整合的神经机制提供了一个极好的模型。已经在许多物种中描述了选择性响应接近威胁的神经元和处理它们的大脑区域。特别是在蝗虫中,已经对潜在的感觉和运动过程进行了详细分析:这些动物拥有一个被称为 LGMD 的特定神经元,它对接近的威胁有选择性反应,并通过第二个被称为 DCMD 的特定神经元将该信息传递给运动中心,从而产生逃避跳跃。行为和体内电生理实验的结合已经揭示了这种行为背后的许多细胞和网络机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验