INDEGSAL, University of León, 24071 León, Spain.
Theriogenology. 2011 Mar 15;75(5):783-95. doi: 10.1016/j.theriogenology.2010.11.034. Epub 2011 Jan 8.
Computer-assisted sperm analysis (CASA) allows assessing the motility of individual spermatozoa, generating huge datasets. These datasets can be analyzed using data mining techniques such as cluster analysis, to group the spermatozoa in subpopulations with biological meaning. This review considers the use of statistical techniques for clustering CASA data, their challenges and possibilities. There are many clustering approaches potentially useful for grouping sperm motility data, but some options may be more appropriate than others. Future development should focus not only in improvements of subpopulation analysis, but also in finding consistent biological meanings for these subpopulations.
计算机辅助精子分析(CASA)可用于评估单个精子的运动能力,产生大量数据集。可以使用数据挖掘技术(如聚类分析)来分析这些数据集,将精子分成具有生物学意义的亚群。本文综述了用于聚类 CASA 数据的统计技术、它们的挑战和可能性。有许多聚类方法可用于对精子运动数据进行分组,但某些方法可能比其他方法更合适。未来的发展不仅应集中于改进亚群分析,还应寻找这些亚群的一致生物学意义。