Suppr超能文献

模拟固氮酶的均相催化剂的理论研究。

Theoretical studies of homogeneous catalysts mimicking nitrogenase.

机构信息

CNR-IOM-DEMOCRITOS National Simulation Center at SISSA, via Bonomea 265, Trieste, Italy.

出版信息

Molecules. 2011 Jan 10;16(1):442-65. doi: 10.3390/molecules16010442.

Abstract

The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

摘要

将氮气转化为氨是一个关键的生物和化学过程,也是化学和生物学中最具挑战性的课题之一。在自然界中,含钼的氮酶通过铁钼辅因子(FeMo-co)在环境条件下进行氮“固定”。相比之下,在工业上,哈伯-博世(Haber-Bosch)工艺在温度和压力剧烈的条件下使用多相铁催化剂将氮气和氢气还原为氨。该工艺用于生产用于农业和工业目的的数百万吨氮化合物,但所需的高温和高压导致大量能量损失,从而引发了一些经济和环境问题。在过去的 40 年中,人们尝试了许多方法来合成简单的均相催化剂,以便在氮酶的相同温和条件下激活氮气。已经证明了许多化合物,几乎都包含过渡金属,能够在不同程度上结合和激活 N₂。然而,迄今为止,只有 Mo(N₂)(HIPTN)₃N(其中(HIPTN)₃N=六异丙基-三联苯三酰胺)是唯一具有催化作用的化合物。在这篇综述中,我们描述了密度泛函理论(DFT)计算如何有助于阐明激活或固定 N₂的无机化合物的反应机制。这些研究提供了重要的见解,使我们能够对已知催化剂的反应机制进行合理化和补充,预测新潜在催化剂的反应性,并帮助设计新的高效催化化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验