Suppr超能文献

光驱动的由 CdS:固氮酶 MoFe 蛋白生物杂合体催化的二氮还原。

Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.

机构信息

Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.

Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.

出版信息

Science. 2016 Apr 22;352(6284):448-50. doi: 10.1126/science.aaf2091.

Abstract

The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.

摘要

氮气(N2)的分裂和还原为氨(NH3)是一个动力学复杂且能量上具有挑战性的多步反应。在哈伯-博世工艺中,N2 的还原是在高温高压下完成的,而氮酶固氮则在环境条件下利用三磷酸腺苷(ATP)水解产生的化学能进行。我们表明,硫化镉(CdS)纳米晶体可用于敏化氮酶钼铁(MoFe)蛋白,其中光捕获取代 ATP 水解以驱动 N2 酶促还原为 NH3,每分钟的周转率为 75 次,在最佳条件下,氮酶复合物的 ATP 偶联反应速率为 63%。氮酶抑制剂(即乙炔、一氧化碳和氢气)抑制了 N2 的还原。CdS:MoFe 蛋白生物杂种为实现光驱动 N2 还原为 NH3 提供了一个光化学模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验