Suppr超能文献

小波分析在化学计量学中的替代常用基和信号压缩。

Alternative common bases and signal compression for wavelets application in chemometrics.

机构信息

Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari, Università di Genova, Via Brigata Salerno 13, 16147 Genova, Italy.

出版信息

Anal Bioanal Chem. 2011 Feb;399(6):1929-39. doi: 10.1007/s00216-010-4632-5. Epub 2011 Jan 11.

Abstract

Representation or compression of data sets in the wavelet space is usually performed to retain the maximum variance of the original or pretreated data, like in the compression by means of principal components. In order to represent together a number of objects in the wavelet space, a common basis is required, and this common basis is usually obtained by means of the variance spectrum or of the variance wavelet tree. In this study, the use of alternative common bases is suggested, both for classification and regression problems. In the case of classification or class-modeling, the suggested common bases are based on the spectrum of the Fisher weights (a measure of the between-class to within-class variance ratio) or on the spectrum of the SIMCA discriminant weights. In the case of regression, the suggested common bases are obtained by the correlation spectrum (the correlation coefficients of the predictor variables with a response variable) or by the PLS (Partial Least Squares regression) importance of the predictors (the product between the absolute value of the regression coefficient of the predictor in the PLS model and its standard deviation). Other alternative strategies apply the Gram-Schmidt supervised orthogonalization to the wavelet coefficients. The results indicate that, both in classification and regression, the information retained after compression in the wavelets space can be more efficient than that retained with a common basis obtained by variance.

摘要

在小波空间中对数据集进行表示或压缩通常是为了保留原始或预处理数据的最大方差,就像通过主成分进行压缩一样。为了在小波空间中一起表示多个对象,需要一个共同的基础,这个共同的基础通常是通过方差谱或方差小波树获得的。在这项研究中,建议使用替代的共同基础,无论是在分类还是回归问题中。在分类或类建模的情况下,建议的共同基础基于 Fisher 权重的谱(衡量类间到类内方差比的度量)或 SIMCA 判别权重的谱。在回归的情况下,建议的共同基础是通过相关谱(预测变量与响应变量之间的相关系数)或通过 PLS(偏最小二乘回归)预测变量的重要性(预测变量在 PLS 模型中的回归系数的绝对值与其标准差的乘积)获得的。其他替代策略是将 Gram-Schmidt 监督正交化应用于小波系数。结果表明,无论是在分类还是回归中,在小波空间中进行压缩后保留的信息都比通过方差获得的共同基础保留的信息更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验