Suppr超能文献

The effect of skull and dura on brain volume regulation after hypo- and hyperosmolar fluid treatment.

作者信息

Kuncz A, Dóczi T, Bodosi M

机构信息

Department of Neurosurgery, Albert Szent-Gyõrgyi Medical University, Szeged, Hungary.

出版信息

Neurosurgery. 1990 Oct;27(4):509-14; discussion 514-5. doi: 10.1097/00006123-199010000-00001.

Abstract

This study was performed to determine the response of brain water and electrolytes to acute hypo-osmolality and hyperosmolality in animals with intact skulls and dura, in comparison with those subjected to extensive bilateral or unilateral craniectomy and opening of the dura. In rats, 4 to 5 weeks after extensive unilateral or bilateral craniectomy and opening of the dura, a 50-mOsm/kg decrease in plasma osmolality was produced by systemic administration of distilled water ("water intoxication"), or a 28-mOsm/kg increase in plasma osmolality was produced by systemic administration of either 1 M NaCl or 1 M mannitol in 0.34 M NaCl. Tissue water, Na. and K contents were determined after 120 minutes. Tissue water accumulation or water loss was proportional to the decrease or increase in plasma osmolality. The tissue water accumulation after "water intoxication," however, was less (40% of the predicted value) than that predicted for ideal osmotic behavior. The brain tissue was also found to shrink less than predicted on the basis of ideal osmotic behavior (40% of the predicted value after mannitol treatment, and 60% after NaCl administration). This nonideal osmotic response of the brain tissue is consistent with the finding in other studies and indicated a significant degree of volume regulation. Water and electrolyte changes did not differ between animals operated on and those not operated on, a fact which demonstrates that there are no effects of extensive skull and dura defects on tissue volume regulation under hypo- and hyperosmolar conditions encountered under clinical circumstances.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验