Suppr超能文献

黄病毒科包膜糖蛋白跨膜结构域的螺旋完整性和微溶剂化作用

Helical integrity and microsolvation of transmembrane domains from Flaviviridae envelope glycoproteins.

作者信息

Jusoh Siti Azma, Helms Volkhard

机构信息

Universität des Saarlandes, 66041 Saarbrücken, Germany.

出版信息

Biochim Biophys Acta. 2011 Apr;1808(4):1040-9. doi: 10.1016/j.bbamem.2011.01.004. Epub 2011 Jan 9.

Abstract

Charged and polar amino acids in the transmembrane domains of integral membrane proteins can be crucial for protein function and also promote helix-helix association or protein oligomerization. Yet, our current understanding is still limited on how these hydrophilic amino acids are efficiently translocated from the Sec61/SecY translocon into the cell membrane during the biogenesis of membrane proteins. In hepatitis C virus, the putative transmembrane segments of envelope glycoproteins E1 and E2 were suggested to heterodimerize via a Lys-Asp ion-pair in the host endoplasmic reticulum. Therefore in this work, we carried out molecular dynamic simulations in explicit lipid bilayer and solvent environment to explore the stability of all possible bridging ion-pairs using the model of H-segment helix dimers. We observed that, frequently, several water molecules penetrated from the interface into the membrane core to stabilize the charged and polar pairs. The hydration time and amount of water molecules in the membrane core depended on the position of the charged residues as well as on the type of ion-pairs. Similar microsolvation events were observed in simulations of the putative E1-E2 transmembrane helix dimers. Simulations of helix monomers from other members of the Flaviviridae family suggest that these systems show similar behaviors. Thus this study illustrates the important contribution of water microsolvation to overcome the unfavorable energetic cost of burying charged and polar amino acids in membrane lipid bilayers. Also, it emphasizes the novel role of bridging charged or polar interactions stabilized by water molecules in the hydrophobic lipid bilayer core that has an important biological function for helix dimerization in several envelope glycoproteins from the family of Flaviviridae viruses.

摘要

整合膜蛋白跨膜结构域中的带电和极性氨基酸对于蛋白质功能可能至关重要,还能促进螺旋-螺旋缔合或蛋白质寡聚化。然而,目前我们对于这些亲水性氨基酸在膜蛋白生物合成过程中如何从Sec61/SecY转运体有效转运到细胞膜中的了解仍然有限。在丙型肝炎病毒中,包膜糖蛋白E1和E2的推定跨膜片段被认为通过宿主内质网中的赖氨酸-天冬氨酸离子对形成异二聚体。因此,在这项工作中,我们在明确的脂质双层和溶剂环境中进行了分子动力学模拟,以使用H段螺旋二聚体模型探索所有可能的桥连离子对的稳定性。我们观察到,通常有几个水分子从界面渗透到膜核心以稳定带电和极性对。膜核心中的水合时间和水量取决于带电残基的位置以及离子对的类型。在推定的E1-E2跨膜螺旋二聚体模拟中也观察到了类似的微溶剂化事件。对黄病毒科其他成员的螺旋单体的模拟表明,这些系统表现出相似的行为。因此,这项研究说明了水微溶剂化在克服将带电和极性氨基酸埋入膜脂质双层中不利的能量成本方面的重要贡献。此外,它强调了由水分子稳定的桥连带电或极性相互作用在疏水脂质双层核心中的新作用,这对于黄病毒科病毒家族中几种包膜糖蛋白的螺旋二聚化具有重要的生物学功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验