Lopez Christophe, Blanke Olaf
Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Swiss Federal Institute of Technology, Lausanne, Switzerland.
Brain Res Rev. 2011 Jun 24;67(1-2):119-46. doi: 10.1016/j.brainresrev.2010.12.002. Epub 2011 Jan 9.
The vestibular system provides the brain with sensory signals about three-dimensional head rotations and translations. These signals are important for postural and oculomotor control, as well as for spatial and bodily perception and cognition, and they are subtended by pathways running from the vestibular nuclei to the thalamus, cerebellum and the "vestibular cortex." The present review summarizes current knowledge on the anatomy of the thalamocortical vestibular system and discusses data from electrophysiology and neuroanatomy in animals by comparing them with data from neuroimagery and neurology in humans. Multiple thalamic nuclei are involved in vestibular processing, including the ventroposterior complex, the ventroanterior-ventrolateral complex, the intralaminar nuclei and the posterior nuclear group (medial and lateral geniculate nuclei, pulvinar). These nuclei contain multisensory neurons that process and relay vestibular, proprioceptive and visual signals to the vestibular cortex. In non-human primates, the parieto-insular vestibular cortex (PIVC) has been proposed as the core vestibular region. Yet, vestibular responses have also been recorded in the somatosensory cortex (area 2v, 3av), intraparietal sulcus, posterior parietal cortex (area 7), area MST, frontal cortex, cingulum and hippocampus. We analyze the location of the corresponding regions in humans, and especially the human PIVC, by reviewing neuroimaging and clinical work. The widespread vestibular projections to the multimodal human PIVC, somatosensory cortex, area MST, intraparietal sulcus and hippocampus explain the large influence of vestibular signals on self-motion perception, spatial navigation, internal models of gravity, one's body perception and bodily self-consciousness.
前庭系统为大脑提供有关头部三维旋转和平移的感觉信号。这些信号对于姿势和眼球运动控制以及空间和身体感知与认知很重要,并且由从前庭核延伸至丘脑、小脑和“前庭皮层”的神经通路支撑。本综述总结了丘脑皮质前庭系统解剖学的当前知识,并通过将动物的电生理学和神经解剖学数据与人类的神经影像学和神经学数据进行比较,讨论了相关数据。多个丘脑核参与前庭处理,包括腹后复合体、腹前 - 腹外侧复合体、板内核和后核群(内侧和外侧膝状体核、枕叶)。这些核包含多感觉神经元,它们处理前庭、本体感觉和视觉信号并将其传递至前庭皮层。在非人类灵长类动物中,顶叶 - 岛叶前庭皮层(PIVC)被认为是核心前庭区域。然而,在体感皮层(2v区、3av区)、顶内沟、顶叶后皮层(7区)、MST区、额叶皮层、扣带回和海马体中也记录到了前庭反应。我们通过回顾神经影像学和临床研究来分析人类相应区域的位置,尤其是人类PIVC的位置。前庭向多模式人类PIVC、体感皮层、MST区、顶内沟和海马体的广泛投射解释了前庭信号对自我运动感知、空间导航、重力内部模型、身体感知和身体自我意识的重大影响。