Suppr超能文献

Cyanide-insensitive NADH oxidation by subcellular fractions isolated from human polymorphonuclear blood cells.

作者信息

Auclair C, Torres M, Cramer E, Hakim J

出版信息

Enzyme. 1978;23(4):225-37. doi: 10.1159/000458584.

Abstract

The biochemical triad, NADH oxidation, oxygen (O2) uptake and hydrogen peroxide (H2O2) formation, by subcellular fractions of human blood polymorphonuclears (PMNs) was investigated. It was found that this biochemical triad (1) was under the control of the granule-rich fraction (GRF) only; (2) was not inhibited by cyanide; (3) occurred stoichiometrically for its three components, and (4) accounted quantitatively for the respiratory burst of the stimulated PMN. It was also shown that the above biochemical triad (1) involved an enzymatic step; (2) was enhanced by acidic pH (0.5) and Mg++; (3) was inhibited by Cu++ or low concentration of Mn++; (4) was dependent on H2O2, perhydroxyl radical (HO2) and hydroxyl radical (HO) since either catalase or superoxide dismutase or scavengers of HO2 or HO were inhibitor, and (5) involved multistep reactions. Evidence is provided that the sequence of the reactions is first a generation of H2O2, (spontaneously from NADH in our incubation medium), secondly the production of HO from H2O2, thirdly the oxidation of NADH with further production of HO2,O2 uptake and H2O2 formation, probably through a chain reaction. The identification of the enzyme(s) involved in these multistep reactions needs further studies.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验