Centre for Computational Science, Chemistry Department, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
J R Soc Interface. 2011 Aug 7;8(61):1114-27. doi: 10.1098/rsif.2010.0609. Epub 2011 Jan 12.
The epidermal growth factor receptor (EGFR) is a major target for drugs in treating lung carcinoma. Mutations in the tyrosine kinase domain of EGFR commonly arise in human cancers, which can cause drug sensitivity or resistance by influencing the relative strengths of drug and ATP-binding. In this study, we investigate the binding affinities of two tyrosine kinase inhibitors--AEE788 and Gefitinib--to EGFR using molecular dynamics simulation. The interactions between these inhibitors and the EGFR kinase domain are analysed using multiple short (ensemble) simulations and the molecular mechanics/Poisson-Boltzmann solvent area (MM/PBSA) method. Here, we show that ensemble simulations correctly rank the binding affinities for these systems: we report the successful ranking of each drug binding to a variety of EGFR sequences and of the two drugs binding to a given sequence, using petascale computing resources, within a few days.
表皮生长因子受体(EGFR)是治疗肺癌的药物的主要靶点。EGFR 酪氨酸激酶结构域的突变在人类癌症中很常见,这可能通过影响药物和 ATP 结合的相对强度来引起药物敏感性或耐药性。在这项研究中,我们使用分子动力学模拟研究了两种酪氨酸激酶抑制剂——AEE788 和吉非替尼——与 EGFR 的结合亲和力。使用多种短(整体)模拟和分子力学/泊松-玻尔兹曼溶剂区域(MM/PBSA)方法分析这些抑制剂与 EGFR 激酶结构域的相互作用。在这里,我们表明,整体模拟正确地对这些系统的结合亲和力进行了排序:我们使用 petascale 计算资源,在几天内成功地对每种药物与各种 EGFR 序列的结合以及两种药物与给定序列的结合进行了排序。