Wright David W, Husseini Fouad, Wan Shunzhou, Meyer Christophe, van Vlijmen Herman, Tresadern Gary, Coveney Peter V
Centre for Computational Science Department of Chemistry University College London London WC1H 0AJ UK.
Janssen Research & Development Turnhoutseweg 30 B-2340 Beerse Belgium.
Adv Theory Simul. 2020 Jan;3(1):1900194. doi: 10.1002/adts.201900194. Epub 2019 Nov 18.
Over the past two decades, the use of fragment-based lead generation has become a common, mature approach to identify tractable starting points in chemical space for the drug discovery process. This approach naturally involves the study of the binding properties of highly heterogeneous ligands. Such datasets challenge computational techniques to provide comparable binding free energy estimates from different binding modes. The performance of a range of statistically robust ensemble-based binding free energy calculation protocols, called ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent), is evaluated. Ligands designed to target two binding pockets in the lactate dehydogenase, a target protein, which vary in size, charge, and binding mode, are studied. When compared to experimental results, excellent statistical rankings are obtained across this highly diverse set of ligands. In addition, three approaches to account for entropic contributions are investigated: 1) normal mode analysis, 2) weighted solvent accessible surface area (WSAS), and 3) variational entropy. Normal mode analysis and WSAS correlate strongly with each other-although the latter is computationally far cheaper-but do not improve rankings. Variational entropy corrects exaggerated discrimination of ligands bound in different pockets but creates three outliers which reduce the quality of the overall ranking.
在过去二十年中,基于片段的先导化合物发现已成为一种常见且成熟的方法,用于在化学空间中确定药物发现过程中易于处理的起始点。这种方法自然涉及对高度异质配体结合特性的研究。此类数据集对计算技术提出了挑战,要求其从不同的结合模式提供可比的结合自由能估计值。评估了一系列基于统计稳健系综的结合自由能计算协议的性能,这些协议称为ESMACS(具有连续溶剂近似的分子动力学增强采样)。研究了设计用于靶向乳酸脱氢酶(一种靶蛋白)中两个结合口袋的配体,这两个口袋在大小、电荷和结合模式上有所不同。与实验结果相比,在这组高度多样化的配体中获得了出色的统计排名。此外,研究了三种考虑熵贡献的方法:1)简正模式分析,2)加权溶剂可及表面积(WSAS),以及3)变分熵。简正模式分析和WSAS彼此高度相关——尽管后者在计算上要便宜得多——但并没有提高排名。变分熵纠正了对结合在不同口袋中的配体的过度区分,但产生了三个异常值,降低了总体排名的质量。