Pressé S, Ghosh K, Phillips R, Dill K A
Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031905. doi: 10.1103/PhysRevE.82.031905. Epub 2010 Sep 15.
We develop theory for the dynamics and fluctuations in some cyclic and linear biochemical reactions. We use the approach of maximum caliber, which computes the ensemble of paths taken by the system, given a few experimental observables. This approach may be useful for interpreting single-molecule or few-particle experiments on molecular motors, enzyme reactions, ion-channels, and phosphorylation-driven biological clocks. We consider cycles where all biochemical states are observable. Our method shows how: (1) the noise in cycles increases with cycle size and decreases with the driving force that spins the cycle and (2) provides a recipe for estimating small-number features, such as probability of backward spin in small cycles, from experimental data. The back-spin probability diminishes exponentially with the deviation from equilibrium. We believe this method may also be useful for other few-particle nonequilibrium biochemical reaction systems.
我们针对一些循环和线性生化反应中的动力学及涨落现象展开理论研究。我们采用最大口径方法,该方法在给定一些实验可观测值的情况下,计算系统所采取路径的系综。这种方法对于解释分子马达、酶反应、离子通道以及磷酸化驱动生物钟的单分子或少量粒子实验可能会有所帮助。我们考虑所有生化状态均可观测的循环。我们的方法展示了:(1)循环中的噪声如何随循环大小增加而增大,随驱动循环的驱动力减小而减小;(2)如何从实验数据中估算少量粒子特征,例如小循环中反向旋转的概率。反向旋转概率随与平衡态的偏差呈指数衰减。我们认为这种方法对于其他少量粒子非平衡生化反应系统也可能有用。