Suppr超能文献

基于梯度扩散的改进空间直接方法以保留完全扩散波动。

Improved spatial direct method with gradient-based diffusion to retain full diffusive fluctuations.

机构信息

Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.

出版信息

J Chem Phys. 2012 Oct 21;137(15):154111. doi: 10.1063/1.4758459.

Abstract

The spatial direct method with gradient-based diffusion is an accelerated stochastic reaction-diffusion simulation algorithm that treats diffusive transfers between neighboring subvolumes based on concentration gradients. This recent method achieved a marked improvement in simulation speed and reduction in the number of time-steps required to complete a simulation run, compared with the exact algorithm, by sampling only the net diffusion events, instead of sampling all diffusion events. Although the spatial direct method with gradient-based diffusion gives accurate means of simulation ensembles, its gradient-based diffusion strategy results in reduced fluctuations in populations of diffusive species. In this paper, we present a new improved algorithm that is able to anticipate all possible microscopic fluctuations due to diffusive transfers in the system and incorporate this information to retain the same degree of fluctuations in populations of diffusing species as the exact algorithm. The new algorithm also provides a capability to set the desired level of fluctuation per diffusing species, which facilitates adjusting the balance between the degree of exactness in simulation results and the simulation speed. We present numerical results that illustrate the recovery of fluctuations together with the accuracy and efficiency of the new algorithm.

摘要

基于梯度的空间直接方法是一种加速的随机反应扩散模拟算法,它基于浓度梯度来处理相邻子体积之间的扩散传递。与精确算法相比,这种新方法通过仅对净扩散事件进行抽样,而不是对所有扩散事件进行抽样,显著提高了模拟速度,并减少了完成模拟运行所需的时间步长数量。尽管基于梯度的空间直接方法为模拟集合提供了准确的方法,但它基于梯度的扩散策略导致扩散物种的种群波动减少。在本文中,我们提出了一种新的改进算法,该算法能够预测系统中由于扩散转移而导致的所有可能的微观波动,并将这些信息纳入其中,以保持与精确算法相同程度的扩散物种的种群波动。新算法还提供了设置每个扩散物种所需波动水平的功能,这有助于在模拟结果的精确程度和模拟速度之间取得平衡。我们提出了数值结果,说明了波动的恢复以及新算法的准确性和效率。

相似文献

4
Algorithm for Mesoscopic Advection-Diffusion.介观扩散算法。
IEEE Trans Nanobioscience. 2018 Oct;17(4):543-554. doi: 10.1109/TNB.2018.2878065. Epub 2018 Oct 25.

引用本文的文献

1
Asynchronous τ-leaping.异步τ跳跃
J Chem Phys. 2016 Mar 28;144(12):125104. doi: 10.1063/1.4944575.

本文引用的文献

2
Teaching the principles of statistical dynamics.讲授统计动力学原理。
Am J Phys. 2006 Feb 1;74(2):123-133. doi: 10.1119/1.2142789.
3
Multi-scale modeling in biology: how to bridge the gaps between scales?生物学中的多尺度建模:如何弥合尺度间的差距?
Prog Biophys Mol Biol. 2011 Oct;107(1):21-31. doi: 10.1016/j.pbiomolbio.2011.06.004. Epub 2011 Jun 23.
5
Dynamical fluctuations in biochemical reactions and cycles.生化反应和循环中的动态波动。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031905. doi: 10.1103/PhysRevE.82.031905. Epub 2010 Sep 15.
6
Stochastic reaction-diffusion kinetics in the microscopic limit.微观极限下的随机反应-扩散动力学。
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19820-5. doi: 10.1073/pnas.1006565107. Epub 2010 Nov 1.
7
Live cell imaging and systems biology.活细胞成像和系统生物学。
Wiley Interdiscip Rev Syst Biol Med. 2011 Mar-Apr;3(2):167-82. doi: 10.1002/wsbm.108. Epub 2010 Aug 20.
9
Maximum caliber inference of nonequilibrium processes.最大口径推断非平衡过程。
J Chem Phys. 2010 Jul 21;133(3):034119. doi: 10.1063/1.3455333.
10
Reaction-diffusion master equation, diffusion-limited reactions, and singular potentials.反应扩散主方程、扩散限制反应和奇异势
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 2):066106. doi: 10.1103/PhysRevE.80.066106. Epub 2009 Dec 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验