Mochrie S G J, Mack A H, Regan L
Department of Physics, Yale University, New Haven, Connecticut 06511, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031913. doi: 10.1103/PhysRevE.82.031913. Epub 2010 Sep 23.
A transfer matrix method is described for the conformational spread (CS) model of allosteric cooperativity within a one-dimensional arrangement of four-state binding sites. Each such binding site can realize one of two possible conformational states. Each of these states can either bind ligand or not bind ligand. Thus, analytical expressions that are exact within the context of the CS model are derived for the grand partition function, for the mean fraction of binding sites occupied by ligand versus ligand concentration, and for the mean fraction of binding sites in a given allosteric state versus ligand concentration. The utility of our analytical results is demonstrated by least-mean-square fitting of prior experimental results obtained on the bacterial flagellar motor for the fraction of FliM/FliG/FliN complexes with CheY-P bound [V. Sourjik and H. C. Berg, Proc. Natl. Acad. Sci. U.S.A. 99, 12669 (2002)] and for the cw bias [P. Cluzel, Science 287, 1652 (2000)], which plausibly may be identified as the fraction of protomers realizing state 2. Finally, the relationships between our analytical results and the classical Monod-Wyman-Changeaux, Koshland-Nemethy-Filmer, and McGhee-Von Hippel treatments of allosteric cooperativity are elucidated, as is the connection to an earlier approximate analytical treatment of the CS model.
本文描述了一种转移矩阵方法,用于研究一维排列的四态结合位点间变构协同性的构象传播(CS)模型。每个这样的结合位点可以实现两种可能构象状态中的一种。这些状态中的每一种都可以结合配体或不结合配体。因此,我们推导出了在CS模型范围内精确的解析表达式,用于巨配分函数、配体占据的结合位点平均分数与配体浓度的关系,以及处于给定变构状态的结合位点平均分数与配体浓度的关系。通过对先前在细菌鞭毛马达上获得的实验结果进行最小二乘拟合,证明了我们解析结果的实用性,这些实验结果涉及结合CheY-P的FliM/FliG/FliN复合物的分数[V. Sourjik和H. C. Berg,《美国国家科学院院刊》99, 12669 (2002)]以及顺时针偏向[P. Cluzel,《科学》287, 1652 (2000)],后者可能合理地被确定为实现状态2的原体的分数。最后,阐明了我们的解析结果与变构协同性的经典莫诺-怀曼-尚热、科什兰德-内梅蒂-菲尔默和麦吉-冯·希佩尔处理方法之间的关系,以及与CS模型早期近似解析处理方法的联系。