Suppr超能文献

随机鞭毛马达开关中的决定论因素

An Element of Determinism in a Stochastic Flagellar Motor Switch.

作者信息

Xie Li, Altindal Tuba, Wu Xiao-Lun

机构信息

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States of America.

Department of Physics, Simon Fraser University, Burnaby, BC, Canada.

出版信息

PLoS One. 2015 Nov 10;10(11):e0141654. doi: 10.1371/journal.pone.0141654. eCollection 2015.

Abstract

Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements.

摘要

海洋溶藻弧菌利用单一极鞭毛在水环境中导航。与大肠杆菌细胞类似,极鞭毛马达有两种状态;当马达逆时针旋转时,细胞向前游动,当马达顺时针旋转时,细胞向后游动。溶藻弧菌在向前游动间隔开始时还通过摆动其鞭毛纳入了一个方向随机化步骤。为了了解极鞭毛马达开关是如何被调节的,本文研究了向前的Δf和向后的Δb间隔的分布情况。我们发现,自由游动细菌的稳态概率密度函数P(Δf)和P(Δb)在有限时间内有强烈的峰值,这表明马达开关不是泊松分布的。短时间抑制足够强且持续时间长,即两个间隔都有几百毫秒,这很容易观察到并进行表征。将马达反转动力学视为一个首次通过问题,这是由马达开关的构象波动引起的,我们计算了P(Δf)和P(Δb),并发现与测量结果吻合良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/505d/4640873/4a6df8989d2f/pone.0141654.g001.jpg

相似文献

1
An Element of Determinism in a Stochastic Flagellar Motor Switch.
PLoS One. 2015 Nov 10;10(11):e0141654. doi: 10.1371/journal.pone.0141654. eCollection 2015.
2
Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells.
Biophys J. 2006 Oct 1;91(7):2726-34. doi: 10.1529/biophysj.106.080697. Epub 2006 Jul 14.
4
[Studies on the mechanism of bacterial flagellar rotation and the flagellar number regulation].
Nihon Saikingaku Zasshi. 2016;71(3):185-97. doi: 10.3412/jsb.71.185.
5
From the Cover: Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis.
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2246-51. doi: 10.1073/pnas.1011953108. Epub 2011 Jan 4.
6
Marine bacterial chemoresponse to a stepwise chemoattractant stimulus.
Biophys J. 2015 Feb 3;108(3):766-74. doi: 10.1016/j.bpj.2014.11.3479.
7
A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary.
Biophys J. 2005 Dec;89(6):3771-9. doi: 10.1529/biophysj.105.067553. Epub 2005 Sep 8.
8
Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation.
J Biochem. 2015 Dec;158(6):523-9. doi: 10.1093/jb/mvv068. Epub 2015 Jul 3.
9
Asymmetric swimming pattern of Vibrio alginolyticus cells with single polar flagella.
FEMS Microbiol Lett. 2005 Jan 15;242(2):221-5. doi: 10.1016/j.femsle.2004.11.007.
10
Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus.
Microbiology (Reading). 1996 Oct;142 ( Pt 10):2777-83. doi: 10.1099/13500872-142-10-2777.

引用本文的文献

1
Bacterial cell-body rotation driven by a single flagellar motor and by a bundle.
Biophys J. 2021 Jun 15;120(12):2454-2460. doi: 10.1016/j.bpj.2021.04.019. Epub 2021 Apr 29.
2
Chemotactic drift speed for bacterial motility pattern with two alternating turning events.
PLoS One. 2018 Jan 19;13(1):e0190434. doi: 10.1371/journal.pone.0190434. eCollection 2018.

本文引用的文献

1
Marine bacterial chemoresponse to a stepwise chemoattractant stimulus.
Biophys J. 2015 Feb 3;108(3):766-74. doi: 10.1016/j.bpj.2014.11.3479.
2
Switching dynamics of the bacterial flagellar motor near zero load.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15752-5. doi: 10.1073/pnas.1418548111. Epub 2014 Oct 20.
3
The influence of cell size on marine bacterial motility and energetics.
Microb Ecol. 1991 Dec;22(1):227-38. doi: 10.1007/BF02540225.
4
A molecular mechanism of direction switching in the flagellar motor of Escherichia coli.
Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17171-6. doi: 10.1073/pnas.1110111108. Epub 2011 Oct 3.
5
Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.
Genes Cells. 2011 Oct;16(10):985-99. doi: 10.1111/j.1365-2443.2011.01545.x. Epub 2011 Sep 5.
6
Structural diversity of bacterial flagellar motors.
EMBO J. 2011 Jun 14;30(14):2972-81. doi: 10.1038/emboj.2011.186.
7
Bacterial chemotaxis in an optical trap.
PLoS One. 2011 Apr 8;6(4):e18231. doi: 10.1371/journal.pone.0018231.
8
Allosteric conformational spread: exact results using a simple transfer matrix method.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031913. doi: 10.1103/PhysRevE.82.031913. Epub 2010 Sep 23.
9
From the Cover: Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis.
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2246-51. doi: 10.1073/pnas.1011953108. Epub 2011 Jan 4.
10
CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network.
Trends Microbiol. 2010 Nov;18(11):494-503. doi: 10.1016/j.tim.2010.07.004. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验