Pawar Nisha, Bohidar H B
Nanomaterials and Nanocomposites Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036107. doi: 10.1103/PhysRevE.82.036107. Epub 2010 Sep 10.
Liquid-liquid phase separation leading to complex coacervation in a ternary system (oppositely charged polyion and macroion in a solvent) is discussed within the framework of a statistical thermodynamics model. The polyion and the macroion in the ternary system interact to form soluble aggregates (complexes) in the solvent, which undergoes liquid-liquid phase separation. Four necessary conditions are shown to drive the phase separation: (i) (σ{23}){3}r/Φ{23c}≥(64/9α{2})(χ{23}Φ{3}){2} , (ii) r≥[64(χ{23}Φ{3}){2}/9α{2}σ{23}{3}]{1/2}, (iii) χ{23}≥(2χ{231}-1)/Φ{23c}Φ{3}, and (iv) (σ{23}){2}/sqrt[I]≥8/3α(2χ{231}-1) (where σ{23} is the surface charge on the complex formed due to binding of the polyelectrolyte and macroion, Φ{23c} is the critical volume fraction of the complex, χ{23} is the Flory interaction parameter between polyelectrolyte and macroion, χ{231} is the same between solvent and the complex, Φ{3} is the volume fraction of the macroions, I is the ionic strength of the solution, α is electrostatic interaction parameter and r is typically of the order of molecular weight of the polyions). It has been shown that coacervation always requires a hydrated medium. In the case of a colloidal macroion and polyelectrolyte coacervation, molecular weight of polyelectrolyte must satisfy the condition r≥10{3} Da to exhibit liquid-liquid phase separation. This model has been successfully applied to study the coacervation phenomenon observed in aqueous Laponite (macroion)-gelatin (polyion) system where it was found that the coacervate volume fraction, δΦ{23}∼χ{231}{2} (where δΦ{23} is the volume fraction of coacervates formed during phase separation). The free energy and entropy of this process have been evaluated, and a free-energy landscape has been drawn for this system that maps the pathway leading to phase separation.
在统计热力学模型的框架内,讨论了三元体系(溶剂中带相反电荷的聚离子和大离子)中导致复合凝聚的液-液相分离。三元体系中的聚离子和大离子相互作用,在溶剂中形成可溶性聚集体(复合物),该聚集体会发生液-液相分离。研究表明,驱动相分离需要四个必要条件:(i)(σ{23}){3}r/Φ{23c}≥(64/9α{2})(χ{23}Φ{3}){2},(ii)r≥[64(χ{23}Φ{3}){2}/9α{2}σ{23}{3}]{1/2},(iii)χ{23}≥(2χ{231}-1)/Φ{23c}Φ{3},以及(iv)(σ{23}){2}/sqrt[I]≥8/3α(2χ{231}-1)(其中σ{23}是由于聚电解质和大离子结合形成的复合物的表面电荷,Φ{23c}是复合物的临界体积分数,χ{23}是聚电解质和大离子之间的弗洛里相互作用参数,χ{231}是溶剂和复合物之间的相同参数,Φ{3}是大离子的体积分数,I是溶液的离子强度,α是静电相互作用参数,r通常为聚离子分子量的量级)。研究表明,凝聚始终需要水合介质。在胶体大离子和聚电解质凝聚的情况下,聚电解质的分子量必须满足条件r≥10{3} Da才能表现出液-液相分离。该模型已成功应用于研究在水相锂皂石(大离子)-明胶(聚离子)体系中观察到的凝聚现象,发现凝聚相体积分数δΦ{23}∼χ{231}{2}(其中δΦ{23}是相分离过程中形成的凝聚相的体积分数)。已评估了该过程的自由能和熵,并绘制了该体系的自由能景观图,该图描绘了导致相分离的途径。