Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA.
Phys Rev Lett. 2010 Oct 8;105(15):156803. doi: 10.1103/PhysRevLett.105.156803. Epub 2010 Oct 7.
A direct signature of electron transport at the metallic surface of a topological insulator is the Aharonov-Bohm oscillation observed in a recent study of Bi2Se3 nanowires [Peng, Nature Mater. 9, 225 (2010)] where conductance was found to oscillate as a function of magnetic flux ϕ through the wire, with a period of one flux quantum ϕ0=h/e and maximum conductance at zero flux. This seemingly agrees neither with diffusive theory, which would predict a period of half a flux quantum, nor with ballistic theory, which in the simplest form predicts a period of ϕ0 but a minimum at zero flux due to a nontrivial Berry phase in topological insulators. We show how h/e and h/2e flux oscillations of the conductance depend on doping and disorder strength, provide a possible explanation for the experiments, and discuss further experiments that could verify the theory.
拓扑绝缘体金属表面的电子输运的一个直接特征是在最近对 Bi2Se3 纳米线的研究中观察到的 Aharonov-Bohm 振荡[Peng, Nature Mater. 9, 225 (2010)],其中电导被发现随通过线的磁通量ϕ呈周期性变化,周期为一个磁通量子ϕ0=h/e,在零通量时达到最大值。这似乎既不符合扩散理论(该理论预测的周期为半磁通量子),也不符合弹道理论(该理论在最简单的形式下预测的周期为ϕ0,但由于拓扑绝缘体中的非平凡 Berry 相,在零通量时出现最小值)。我们展示了电导的 h/e 和 h/2e 通量振荡如何取决于掺杂和无序强度,为实验提供了可能的解释,并讨论了进一步的实验,这些实验可以验证该理论。