Suppr超能文献

基于数据的 7T fMRI 血氧水平依赖功能磁共振成像中 2D EPI 和 3D PRESTO 的优化与评估:I. 焦点覆盖范围。

Data-driven optimization and evaluation of 2D EPI and 3D PRESTO for BOLD fMRI at 7 Tesla: I. Focal coverage.

机构信息

Vanderbilt University Institute of Imaging Science, Nashville, TN 37232-2310, USA.

出版信息

Neuroimage. 2011 Apr 1;55(3):1034-43. doi: 10.1016/j.neuroimage.2010.12.086. Epub 2011 Jan 11.

Abstract

Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is commonly performed using 2D single-shot echo-planar imaging (EPI). However, single-shot EPI at 7 Tesla (T) often suffers from significant geometric distortions (due to low bandwidth (BW) in the phase-encode (PE) direction) and amplified physiological noise. Recent studies have suggested that 3D multi-shot sequences such as PRESTO may offer comparable BOLD contrast-to-noise ratio with increased volume coverage and decreased geometric distortions. Thus, a four-way group-level comparison was performed between 2D and 3D acquisition sequences at two in-plane resolutions. The quality of fMRI data was evaluated via metrics of prediction and reproducibility using NPAIRS (Non-parametric Prediction, Activation, Influence and Reproducibility re-Sampling). Group activation maps were optimized for each acquisition strategy by selecting the number of principal components that jointly maximized prediction and reproducibility, and showed good agreement in sensitivity and specificity for positive BOLD changes. High-resolution EPI exhibited the highest z-scores of the four acquisition sequences; however, it suffered from the lowest BW in the PE direction (resulting in the worst geometric distortions) and limited spatial coverage, and also caused some subject discomfort through peripheral nerve stimulation (PNS). In comparison, PRESTO also had high z-scores (higher than EPI for a matched in-plane resolution), the highest BW in the PE direction (producing images with superior geometric fidelity), the potential for whole-brain coverage, and no reported PNS. This study provides evidence to support the use of 3D multi-shot acquisition sequences in lieu of single-shot EPI for ultra high field BOLD fMRI at 7T.

摘要

血氧水平依赖(BOLD)功能磁共振成像(fMRI)通常使用二维单次激发回波平面成像(EPI)进行。然而,7 特斯拉(T)的单次激发 EPI 常常受到显著的几何变形(由于相位编码(PE)方向的带宽(BW)低)和放大的生理噪声的影响。最近的研究表明,像 PRESTO 这样的 3D 多shot 序列可能提供可比的 BOLD 对比噪声比,同时增加了体积覆盖范围并减少了几何变形。因此,在两个平面内分辨率下,在 2D 和 3D 采集序列之间进行了四路组水平比较。使用 NPAIRS(非参数预测、激活、影响和可重复性再采样)通过预测和可重复性的度量来评估 fMRI 数据的质量。通过选择共同最大化预测和可重复性的主成分数量,为每个采集策略优化了组激活图,并且在阳性 BOLD 变化的敏感性和特异性方面表现出良好的一致性。高分辨率 EPI 在四个采集序列中表现出最高的 z 分数;然而,它在 PE 方向上的 BW 最低(导致最严重的几何变形)和有限的空间覆盖范围,并且通过外周神经刺激(PNS)也引起了一些受试者的不适。相比之下,PRESTO 也具有高 z 分数(对于匹配的平面内分辨率,高于 EPI),PE 方向上的 BW 最高(产生具有优越的几何保真度的图像),具有全脑覆盖的潜力,并且没有报告 PNS。本研究提供了证据支持在 7T 超高场 BOLD fMRI 中使用 3D 多shot 采集序列代替单次激发 EPI。

相似文献

1
Data-driven optimization and evaluation of 2D EPI and 3D PRESTO for BOLD fMRI at 7 Tesla: I. Focal coverage.
Neuroimage. 2011 Apr 1;55(3):1034-43. doi: 10.1016/j.neuroimage.2010.12.086. Epub 2011 Jan 11.
2
Thermal stimulus task fMRI in the cervical spinal cord at 7 Tesla.
Hum Brain Mapp. 2024 Feb 15;45(3):e26597. doi: 10.1002/hbm.26597.
3
BOLD sensitivity and SNR characteristics of parallel imaging-accelerated single-shot multi-echo EPI for fMRI.
Neuroimage. 2014 Jan 1;84:65-75. doi: 10.1016/j.neuroimage.2013.08.007. Epub 2013 Aug 15.
4
Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7 Tesla.
Magn Reson Imaging. 2013 Feb;31(2):212-20. doi: 10.1016/j.mri.2012.07.001. Epub 2012 Aug 24.
5
Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI.
Neuroimage. 2005 Feb 15;24(4):1068-79. doi: 10.1016/j.neuroimage.2004.10.012. Epub 2004 Dec 8.
6
Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T.
Neuroimage. 2021 Nov 1;241:118435. doi: 10.1016/j.neuroimage.2021.118435. Epub 2021 Jul 27.
7
Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications.
Neuroimage. 2018 Jan 1;164:131-143. doi: 10.1016/j.neuroimage.2016.11.039. Epub 2016 Nov 18.
8
Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging.
PLoS One. 2014 Dec 30;9(12):e116378. doi: 10.1371/journal.pone.0116378. eCollection 2014.
10
Single-shot echo planar time-resolved imaging for multi-echo functional MRI and distortion-free diffusion imaging.
Magn Reson Med. 2025 Mar;93(3):993-1013. doi: 10.1002/mrm.30327. Epub 2024 Oct 20.

引用本文的文献

1
Thermal stimulus task fMRI in the cervical spinal cord at 7 Tesla.
Hum Brain Mapp. 2024 Feb 15;45(3):e26597. doi: 10.1002/hbm.26597.
2
Impact of autocalibration method on accelerated EPI of the cervical spinal cord at 7 T.
Magn Reson Med. 2022 Dec;88(6):2583-2591. doi: 10.1002/mrm.29415. Epub 2022 Aug 24.
3
Multi-shot acquisitions for stimulus-evoked spinal cord BOLD fMRI.
Magn Reson Med. 2021 Apr;85(4):2016-2026. doi: 10.1002/mrm.28570. Epub 2020 Nov 10.
4
A practical protocol for measurements of spinal cord functional connectivity.
Sci Rep. 2018 Nov 8;8(1):16512. doi: 10.1038/s41598-018-34841-6.
5
Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord.
Brain. 2018 Jun 1;141(6):1650-1664. doi: 10.1093/brain/awy083.
6
Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T.
Hum Brain Mapp. 2017 Jun;38(6):3226-3248. doi: 10.1002/hbm.23586. Epub 2017 Mar 27.
7
Reproducibility of resting state spinal cord networks in healthy volunteers at 7 Tesla.
Neuroimage. 2016 Jun;133:31-40. doi: 10.1016/j.neuroimage.2016.02.058. Epub 2016 Feb 26.
8
Breakdown of the brain's functional network modularity with awareness.
Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3799-804. doi: 10.1073/pnas.1414466112. Epub 2015 Mar 10.
9
Resting state functional connectivity in the human spinal cord.
Elife. 2014 Aug 5;3:e02812. doi: 10.7554/eLife.02812.
10
A study-specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7 Tesla.
Neuroimage. 2014 Oct 15;100:710-4. doi: 10.1016/j.neuroimage.2014.06.045. Epub 2014 Jun 25.

本文引用的文献

1
FLASH imaging: rapid NMR imaging using low flip-angle pulses. 1986.
J Magn Reson. 2011 Dec;213(2):533-41. doi: 10.1016/j.jmr.2011.09.021.
2
Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data.
Neuroimage. 2011 May 15;56(2):531-43. doi: 10.1016/j.neuroimage.2010.09.034. Epub 2010 Sep 19.
3
Searching scale space for activation in PET images.
Hum Brain Mapp. 1996;4(1):74-90. doi: 10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.0.CO;2-M.
4
Three dimensional echo-planar imaging at 7 Tesla.
Neuroimage. 2010 May 15;51(1):261-6. doi: 10.1016/j.neuroimage.2010.01.108. Epub 2010 Feb 6.
5
Layer-specific BOLD activation in human V1.
Hum Brain Mapp. 2010 Sep;31(9):1297-304. doi: 10.1002/hbm.20936.
6
Group specific optimisation of fMRI processing steps for child and adult data.
Neuroimage. 2010 Apr 1;50(2):479-90. doi: 10.1016/j.neuroimage.2009.11.039. Epub 2009 Dec 3.
7
Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI.
Magn Reson Imaging. 2010 Feb;28(2):235-44. doi: 10.1016/j.mri.2009.07.005. Epub 2009 Aug 19.
8
Functional connectivity reveals inefficient working memory systems in post-traumatic stress disorder.
Psychiatry Res. 2009 Jun 30;172(3):235-41. doi: 10.1016/j.pscychresns.2008.07.014. Epub 2009 Apr 23.
9
Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
Magn Reson Imaging. 2009 Feb;27(2):264-78. doi: 10.1016/j.mri.2008.05.021. Epub 2008 Oct 11.
10
Optimizing the mapping of finger areas in primary somatosensory cortex using functional MRI.
Magn Reson Imaging. 2008 Dec;26(10):1342-51. doi: 10.1016/j.mri.2008.04.007. Epub 2008 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验