Suppr超能文献

脊髓功能连接测量的实用方案。

A practical protocol for measurements of spinal cord functional connectivity.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Sci Rep. 2018 Nov 8;8(1):16512. doi: 10.1038/s41598-018-34841-6.

Abstract

Resting state functional magnetic resonance imaging (fMRI) has been used to study human brain function for over two decades, but only recently has this technique been successfully translated to the human spinal cord. The spinal cord is structurally and functionally unique, so resting state fMRI methods developed and optimized for the brain may not be appropriate when applied to the cord. This report therefore investigates the relative impact of different acquisition and processing choices (including run length, echo time, and bandpass filter width) on the detectability of resting state spinal cord networks at 3T. Our results suggest that frequencies beyond 0.08 Hz should be included in resting state analyses, a run length of ~8-12 mins is appropriate for reliable detection of the ventral (motor) network, and longer echo times - yet still shorter than values typically used for fMRI in the brain - may increase the detectability of the dorsal (sensory) network. Further studies are required to more fully understand and interpret the nature of resting state spinal cord networks in health and in disease, and the protocols described in this report are designed to assist such studies.

摘要

静息态功能磁共振成像(fMRI)已经被用于研究人类大脑功能超过二十年,但是直到最近这项技术才被成功地应用于人体脊髓。脊髓在结构和功能上是独特的,因此在应用于脊髓时,为大脑开发和优化的静息态 fMRI 方法可能并不合适。因此,本报告研究了不同采集和处理选择(包括运行时间、回波时间和带通滤波器带宽)对 3T 下静息态脊髓网络检测能力的相对影响。我们的结果表明,静息态分析中应包括 0.08 Hz 以上的频率,约 8-12 分钟的运行时间适合可靠地检测腹侧(运动)网络,而更长的回波时间 - 尽管仍然短于大脑中 fMRI 通常使用的值 - 可能会增加背侧(感觉)网络的检测能力。需要进一步的研究来更全面地了解和解释健康和疾病状态下静息态脊髓网络的性质,本报告中描述的方案旨在协助这些研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验